http://Genomics.org/api.php?action=feedcontributions&user=WikiSysop&feedformat=atom Genomics.org - User contributions [en] 2024-03-28T16:34:44Z User contributions MediaWiki 1.31.3 http://Genomics.org/index.php?title=Genomics_News_and_Ads_Archive&diff=3630 Genomics News and Ads Archive 2011-03-26T17:56:38Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;br /&gt;<br /> 20110324:&amp;nbsp;[[Multiple myeloma genomes sequenced]]: 20110324 Nature.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-family: Arial&quot;&gt;&lt;span style=&quot;font-size: medium&quot;&gt;<br /> &lt;p&gt;20110214: [[Prostate cancer genomes sequenced by Broad and Dana Faber]]: 20110214&lt;/p&gt;<br /> &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20110201: [[Three new ant genomes sequenced and reported in PNAS: Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)]]&lt;br /&gt;<br /> &lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20110127: [[University of Colorado gets funds for genome sequencing from the government]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20101009: [[Image:Paris japonica logo openfree.gif]] [[The largest genome size known today: Paris japonica]]: &amp;rArr; [[Genome size]] &lt;br /&gt;<br /> 20100907: [[Image:Turkey logo 2.gif]] [[Turkey genome sequenced 20100907]] &amp;rArr; [[Bird genome]]&amp;nbsp;&lt;br /&gt;<br /> 20100818: [[Image:Scripps logo openfree 1.gif]] [[Image:Sanofi aventis logo1.gif]] [[Scripps, Sanofi Personalized Medicine Pact to Focus Initial PGx Research on Diabetes, Aging]] &lt;br /&gt;<br /> 20100810:[[Accumulation of mutations over the entire mitochondrial genome of breast cancer cells obtained by tissue microdissection]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100711:Theragen [[Totalomics Solutions Launched]] &amp;rArr;[[Genome sequencing product]]&amp;nbsp;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20100623: [[African Genomics project launched]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100427: [[GET conference Boston by PGP]] Boston, 27th April.&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100419: [[Personal Genomics Institute established]] &amp;rArr;[[Genome Institutes]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100401: [[IonTorrent ion-sequencing machine announced publically]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100330:[[The first fully public female human genome: Rosalynn Gill]]: PGP9. 20100330.&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100325: [[The dynamic genome of Hydra]] Nature. 2010 Mar 25 &amp;rArr; [[Animal Genome]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100315:[[The Human Genome Rights]] Declaration. 20100315 &amp;rArr;[[GenomeEthics]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100310: [[Whole-Genome Sequencing in a Patient with Charcot&amp;ndash;Marie&amp;ndash;Tooth Neuropathy]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100126: GATC Biotech Purchases [[HiSeq 2000]] Instrument. . &amp;rArr;[[GenomeSequencer]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100303: [[Theragen Inc. launched a personal genome typing service similar to 23andme's. However, the product was&amp;nbsp;&lt;br /&gt;<br /> withheld due to legal issues.]]&amp;nbsp;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20100121: [[File:Panda logo tr openfree_2.jpg]] [[The sequence of Giant Panda genome assembled de novo by NGS by BGI.]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20091230: [[Theragen Inc. in Korea launches commercial full genome and SNP chip personal genome service. The first in Asia]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090928: [[Potato genome draft announced]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090810: [[A Caucasian human genome was sequenced by Helicos single molecule sequencer]].&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090805: [[Recurring Mutations Found by Full length Sequencing of an Acute Myeloid Leukemia Genome (AML)]]. [[N&amp;nbsp;&lt;br /&gt;<br /> Engl J Med]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090802: [[The complete genome sequence of Triticum mosaic virus is published in Arch Vriol.]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090730: [[Crocodile genome map published in BMC Genomics]].&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090727: [[A new multiplex sequencing method published by MPI group for highly degraded DNA fragments. Cave&amp;nbsp;&lt;br /&gt;<br /> bear mitochondria]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090724: DNA Sequencing and&amp;nbsp;Array Drive 8% Growth for Roche in First Half of 2009. [[454 GS FLX]] and [[Nimblegen]]. [http://www.genomeweb.com/sequencing/dna-sequencing-systems-arrays-drive-8-percent-growth-roche-applied-science-first]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090724: BGI (Beijing Genomics Institute) in China participates in orchid genome (&lt;em&gt;[[Phalaenopsis equestris]]) &lt;/em&gt;sequencing. [http://www.genomeweb.com/sequencing/bgi-china-partners-sequence-orchids]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: Navigenics Lowers Health Compass Price to $999 USD. [http://www.genomeweb.com/dxpgx/navigenics-&lt;br /&gt;<br /> lowers-health-compass-price-1k]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: Celera Uses&amp;nbsp;Automated Workflows for Genomics [http://www.bio-itworld.com/news/2009/07/17/celera-pushes-boundaries.html]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: [[A draft genomic sequence for a worm, Schistosoma japonicum, was published]].&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: Genomes Of Parasitic Flatworms Decoded: &lt;em&gt;Schistosoma mansoni&lt;/em&gt; and &lt;em&gt;Schistosoma japonicum&lt;/em&gt; [http://www.sciencedaily.com/releases/2009/07/090715131439.htm]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: &lt;!-- a href=http://c.moreover.com/click/here.pl?z2090023735&amp;amp;z=950242273 target=_parent&gt;&lt;b&gt;Exxon join with DNA pioneer to develop algae biofuels&lt;/b&gt;&lt;/a --&gt;&lt;/span&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;a target=&quot;_parent&quot; d.moreover.com=&quot;&quot; click=&quot;&quot; c.moreover.com=&quot;&quot; href=&quot;http://www.bioportfolio.co.uk/cgi-bin/dialogserver.exe?CMD=hit.displayMdoc&amp;amp;ID=3022030&amp;amp;HITNO=2&amp;amp;MSIZE=634&amp;amp;LANGUAGE=en&amp;amp;FILE=doc.NEWSFEED&amp;amp;SAVEQUERY00=Genomics&amp;amp;SAVEPROP00=L%3den&amp;amp;SAVEDB=news&amp;amp;SAVEORGANISE_CODED=R:date&amp;amp;R=3022030&amp;amp;THISHREF=http://c.moreover.com/click/here.pl%3fz2090023735%26amp%3bz%3d950242273&amp;amp;THEHOST=site d.moreover.com&quot;&gt;&lt;font color=&quot;#0066cc&quot;&gt;Exxon join with DNA pioneer to develop algae biofuels&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090715: [[Pathway Genomics]] starts the Direct-to-Consumer Genomics service as 23andme and Decodeme&amp;nbsp;&lt;br /&gt;<br /> [http://www.bio-itworld.com/news/2009/07/15/pathway-consumer-genomics.html]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090714: OryzaSNP Consortium IDs Thousands of Variants in Rice Genome: [http://www.genomeweb.com/arrays/oryzasnp-consortium-ids-thousands-variants-rice-genome]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090709: [[The second Korean pesonal genome was sequenced by a Korean team and analyzed by US researchers]] (Macrogen and Seoul University Medical School)&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090630: [[Genomic linkage map of the human blood fluke Schistosoma mansoni]]:&amp;nbsp; &lt;em&gt;Genome Biology&lt;/em&gt; 2009, 10:R71&lt;span class=&quot;pseudotab&quot;&gt;doi:10.1186/gb-2009-10-6-r71&lt;/span&gt;&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090629: [[Melon Genome Map was publicized by US researchers]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090616: Illumina Launches Personal Genome-Sequencing Service Using Genome Analyzer II. [http://scienceblogs.com/geneticfuture/2009/06/illumina_launches_personal_gen.php]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090604: [[An integrated genetic and cytogenetic map of the cucumber genome was announced in PLOS One]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090603: [[Neanderthal genome sequeced by MPI Germany and Roche]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090601: Microsoft buys Rosetta Biosoftware from Merck. Merck becomes the client of Microsoft.&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090529:&amp;nbsp;[[A new malaria agent in African chimpanzees found]].&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090526: [[The first Korean Genome Sequence analysis]] by two Korean teams&amp;nbsp;published in&amp;nbsp;&lt;br /&gt;<br /> [http://genome.cshlp.org/content/early/2009/05/26/gr.092197.109.full.pdf+html Genome Research article]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20081208: [[Soybean genome, G. max data publicized]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20081204: [http://www.koreatimes.co.kr/www/news/tech/2008/12/133_35578.html Korean Genome Publicized]. The sequencing and bioinformatic analyses were carried out by two&amp;nbsp;Korean teams. &lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;hr /&gt;<br /> [[Genomics News Links]]&amp;nbsp;&amp;nbsp; [[Biotechnology News Sites]]&amp;nbsp;&amp;nbsp; [[Science News Sites]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Genomics_News_and_Ads_Archive&diff=3629 Genomics News and Ads Archive 2011-03-26T17:55:34Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;br /&gt;<br /> 20110324:&amp;nbsp;[[Multiple myeloma genomes sequenced]]: 20110324 Nature.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20110201: [[Three new ant genomes sequenced and reported in PNAS: Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)]]&lt;br /&gt;<br /> &lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20110127: [[University of Colorado gets funds for genome sequencing from the government]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20101009: [[Image:Paris japonica logo openfree.gif]] [[The largest genome size known today: Paris japonica]]: &amp;rArr; [[Genome size]] &lt;br /&gt;<br /> 20100907: [[Image:Turkey logo 2.gif]] [[Turkey genome sequenced 20100907]] &amp;rArr; [[Bird genome]]&amp;nbsp;&lt;br /&gt;<br /> 20100818: [[Image:Scripps logo openfree 1.gif]] [[Image:Sanofi aventis logo1.gif]] [[Scripps, Sanofi Personalized Medicine Pact to Focus Initial PGx Research on Diabetes, Aging]] &lt;br /&gt;<br /> 20100810:[[Accumulation of mutations over the entire mitochondrial genome of breast cancer cells obtained by tissue microdissection]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100711:Theragen [[Totalomics Solutions Launched]] &amp;rArr;[[Genome sequencing product]]&amp;nbsp;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20100623: [[African Genomics project launched]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100427: [[GET conference Boston by PGP]] Boston, 27th April.&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100419: [[Personal Genomics Institute established]] &amp;rArr;[[Genome Institutes]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100401: [[IonTorrent ion-sequencing machine announced publically]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100330:[[The first fully public female human genome: Rosalynn Gill]]: PGP9. 20100330.&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100325: [[The dynamic genome of Hydra]] Nature. 2010 Mar 25 &amp;rArr; [[Animal Genome]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100315:[[The Human Genome Rights]] Declaration. 20100315 &amp;rArr;[[GenomeEthics]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100310: [[Whole-Genome Sequencing in a Patient with Charcot&amp;ndash;Marie&amp;ndash;Tooth Neuropathy]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100126: GATC Biotech Purchases [[HiSeq 2000]] Instrument. . &amp;rArr;[[GenomeSequencer]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20100303: [[Theragen Inc. launched a personal genome typing service similar to 23andme's. However, the product was&amp;nbsp;&lt;br /&gt;<br /> withheld due to legal issues.]]&amp;nbsp;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;20100121: [[File:Panda logo tr openfree_2.jpg]] [[The sequence of Giant Panda genome assembled de novo by NGS by BGI.]]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20091230: [[Theragen Inc. in Korea launches commercial full genome and SNP chip personal genome service. The first in Asia]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090928: [[Potato genome draft announced]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090810: [[A Caucasian human genome was sequenced by Helicos single molecule sequencer]].&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090805: [[Recurring Mutations Found by Full length Sequencing of an Acute Myeloid Leukemia Genome (AML)]]. [[N&amp;nbsp;&lt;br /&gt;<br /> Engl J Med]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090802: [[The complete genome sequence of Triticum mosaic virus is published in Arch Vriol.]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090730: [[Crocodile genome map published in BMC Genomics]].&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090727: [[A new multiplex sequencing method published by MPI group for highly degraded DNA fragments. Cave&amp;nbsp;&lt;br /&gt;<br /> bear mitochondria]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090724: DNA Sequencing and&amp;nbsp;Array Drive 8% Growth for Roche in First Half of 2009. [[454 GS FLX]] and [[Nimblegen]]. [http://www.genomeweb.com/sequencing/dna-sequencing-systems-arrays-drive-8-percent-growth-roche-applied-science-first]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090724: BGI (Beijing Genomics Institute) in China participates in orchid genome (&lt;em&gt;[[Phalaenopsis equestris]]) &lt;/em&gt;sequencing. [http://www.genomeweb.com/sequencing/bgi-china-partners-sequence-orchids]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: Navigenics Lowers Health Compass Price to $999 USD. [http://www.genomeweb.com/dxpgx/navigenics-&lt;br /&gt;<br /> lowers-health-compass-price-1k]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: Celera Uses&amp;nbsp;Automated Workflows for Genomics [http://www.bio-itworld.com/news/2009/07/17/celera-pushes-boundaries.html]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: [[A draft genomic sequence for a worm, Schistosoma japonicum, was published]].&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: Genomes Of Parasitic Flatworms Decoded: &lt;em&gt;Schistosoma mansoni&lt;/em&gt; and &lt;em&gt;Schistosoma japonicum&lt;/em&gt; [http://www.sciencedaily.com/releases/2009/07/090715131439.htm]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090716: &lt;!-- a href=http://c.moreover.com/click/here.pl?z2090023735&amp;amp;z=950242273 target=_parent&gt;&lt;b&gt;Exxon join with DNA pioneer to develop algae biofuels&lt;/b&gt;&lt;/a --&gt;&lt;/span&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;a target=&quot;_parent&quot; d.moreover.com=&quot;&quot; click=&quot;&quot; c.moreover.com=&quot;&quot; href=&quot;http://www.bioportfolio.co.uk/cgi-bin/dialogserver.exe?CMD=hit.displayMdoc&amp;amp;ID=3022030&amp;amp;HITNO=2&amp;amp;MSIZE=634&amp;amp;LANGUAGE=en&amp;amp;FILE=doc.NEWSFEED&amp;amp;SAVEQUERY00=Genomics&amp;amp;SAVEPROP00=L%3den&amp;amp;SAVEDB=news&amp;amp;SAVEORGANISE_CODED=R:date&amp;amp;R=3022030&amp;amp;THISHREF=http://c.moreover.com/click/here.pl%3fz2090023735%26amp%3bz%3d950242273&amp;amp;THEHOST=site d.moreover.com&quot;&gt;&lt;font color=&quot;#0066cc&quot;&gt;Exxon join with DNA pioneer to develop algae biofuels&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090715: [[Pathway Genomics]] starts the Direct-to-Consumer Genomics service as 23andme and Decodeme&amp;nbsp;&lt;br /&gt;<br /> [http://www.bio-itworld.com/news/2009/07/15/pathway-consumer-genomics.html]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090714: OryzaSNP Consortium IDs Thousands of Variants in Rice Genome: [http://www.genomeweb.com/arrays/oryzasnp-consortium-ids-thousands-variants-rice-genome]&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090709: [[The second Korean pesonal genome was sequenced by a Korean team and analyzed by US researchers]] (Macrogen and Seoul University Medical School)&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090630: [[Genomic linkage map of the human blood fluke Schistosoma mansoni]]:&amp;nbsp; &lt;em&gt;Genome Biology&lt;/em&gt; 2009, 10:R71&lt;span class=&quot;pseudotab&quot;&gt;doi:10.1186/gb-2009-10-6-r71&lt;/span&gt;&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090629: [[Melon Genome Map was publicized by US researchers]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090616: Illumina Launches Personal Genome-Sequencing Service Using Genome Analyzer II. [http://scienceblogs.com/geneticfuture/2009/06/illumina_launches_personal_gen.php]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090604: [[An integrated genetic and cytogenetic map of the cucumber genome was announced in PLOS One]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090603: [[Neanderthal genome sequeced by MPI Germany and Roche]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090601: Microsoft buys Rosetta Biosoftware from Merck. Merck becomes the client of Microsoft.&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090529:&amp;nbsp;[[A new malaria agent in African chimpanzees found]].&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20090526: [[The first Korean Genome Sequence analysis]] by two Korean teams&amp;nbsp;published in&amp;nbsp;&lt;br /&gt;<br /> [http://genome.cshlp.org/content/early/2009/05/26/gr.092197.109.full.pdf+html Genome Research article]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20081208: [[Soybean genome, G. max data publicized]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> 20081204: [http://www.koreatimes.co.kr/www/news/tech/2008/12/133_35578.html Korean Genome Publicized]. The sequencing and bioinformatic analyses were carried out by two&amp;nbsp;Korean teams. &lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;hr /&gt;<br /> [[Genomics News Links]]&amp;nbsp;&amp;nbsp; [[Biotechnology News Sites]]&amp;nbsp;&amp;nbsp; [[Science News Sites]]&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Multiple_myeloma_genomes_authors&diff=3624 Multiple myeloma genomes authors 2011-03-26T17:52:55Z <p>WikiSysop: Created page with &quot;&lt;p&gt;Michael A. Chapman,1, 22 &lt;br /&gt; Michael S. Lawrence,1 &lt;br /&gt; Jonathan J. Keats,2, 3 &lt;br /&gt; Kristian Cibulskis,1 &lt;br /&gt; Carrie Sougnez,1 &lt;br /&gt; Anna C. Schinzel,4 &lt;br /&gt; Christ...&quot;</p> <hr /> <div>&lt;p&gt;Michael A. Chapman,1, 22 &lt;br /&gt;<br /> Michael S. Lawrence,1 &lt;br /&gt;<br /> Jonathan J. Keats,2, 3 &lt;br /&gt;<br /> Kristian Cibulskis,1 &lt;br /&gt;<br /> Carrie Sougnez,1 &lt;br /&gt;<br /> Anna C. Schinzel,4 &lt;br /&gt;<br /> Christina L. Harview,1 &lt;br /&gt;<br /> Jean-Philippe Brunet,1 &lt;br /&gt;<br /> Gregory J. Ahmann,2, 3 &lt;br /&gt;<br /> Mazhar Adli,1, 5 &lt;br /&gt;<br /> Kenneth C. Anderson,3, 4 &lt;br /&gt;<br /> Kristin G. Ardlie,1 &lt;br /&gt;<br /> Daniel Auclair,3, 6 &lt;br /&gt;<br /> Angela Baker,7 &lt;br /&gt;<br /> P. Leif Bergsagel,2, 3 &lt;br /&gt;<br /> Bradley E. Bernstein,1, 5, 8, 9 &lt;br /&gt;<br /> Yotam Drier,1, 10 &lt;br /&gt;<br /> Rafael Fonseca,2, 3 &lt;br /&gt;<br /> Stacey B. Gabriel,1 &lt;br /&gt;<br /> Craig C. Hofmeister,3, 11 &lt;br /&gt;<br /> Sundar Jagannath,3, 12 &lt;br /&gt;<br /> Andrzej J. Jakubowiak,3, 13 &lt;br /&gt;<br /> Amrita Krishnan,3, 14 &lt;br /&gt;<br /> Joan Levy,3, 6 &lt;br /&gt;<br /> Ted Liefeld,1 &lt;br /&gt;<br /> Sagar Lonial,3, 15 Scott Mahan,1 Bunmi Mfuko,3, 6 Stefano Monti,1 Louise M. Perkins,3, 6 Robb Onofrio,1 Trevor J. Pugh,1 S. Vincent Rajkumar,3, 16 Alex H. Ramos,1 David S. Siegel,3, 17 Andrey Sivachenko,1 A. Keith Stewart,2, 3 Suzanne Trudel,3, 18 Ravi Vij,3, 19 Douglas Voet,1 Wendy Winckler,1 Todd Zimmerman,3, 20 John Carpten,7 Jeff Trent,7 William C. Hahn,1, 4, 8 Levi A. Garraway,1, 4 Matthew Meyerson,1, 4, 8 Eric S. Lander,1, 8, 21 Gad Getz1 &amp;amp; Todd R. Golub1, 4, 8, 9&amp;nbsp;&lt;br /&gt;<br /> &amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Multiple_myeloma_genomes_sequenced&diff=3623 Multiple myeloma genomes sequenced 2011-03-26T17:52:46Z <p>WikiSysop: </p> <hr /> <div>&lt;h1 class=&quot;article-heading&quot;&gt;Initial genome sequencing and analysis of multiple myeloma&lt;/h1&gt;<br /> &lt;p&gt;[[Multiple myeloma genomes authors]]&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;Abstract&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-&amp;kappa;B signalling was indicated by mutations in 11 members of the NF-&amp;kappa;B pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;a href=&quot;http://www.nature.com/nature/journal/v471/n7339/full/nature09837.html&quot;&gt;&lt;span style=&quot;font-size: medium&quot;&gt;http://www.nature.com/nature/journal/v471/n7339/full/nature09837.html&lt;/span&gt;&lt;/a&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;References&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;1. Bergsagel, P. L. &amp;amp; Kuehl, W. M. Molecular pathogenesis and a consequent&lt;br /&gt;<br /> classification of multiple myeloma. J. Clin. Oncol. 23, 6333&amp;ndash;6338 (2005).&lt;br /&gt;<br /> 2. Keats, J. J. et al. Promiscuousmutations activate the noncanonical NF-kBpathway&lt;br /&gt;<br /> in multiple myeloma. Cancer Cell 12, 131&amp;ndash;144 (2007).&lt;br /&gt;<br /> 3. Annunziata, C. M. et al. Frequentengagement of the classicaland alternativeNF-kB&lt;br /&gt;<br /> pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12,&lt;br /&gt;<br /> 115&amp;ndash;130 (2007).&lt;br /&gt;<br /> 4. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene&lt;br /&gt;<br /> UTX in human cancer. Nature Genet. 41, 521&amp;ndash;523 (2009).&lt;br /&gt;<br /> 5. Lee, W. et al. Themutation spectrumrevealed by paired genomesequences froma&lt;br /&gt;<br /> lung cancer patient. Nature 465, 473&amp;ndash;477 (2010).&lt;br /&gt;<br /> 6. Campbell, P. J. et al. Identification of somatically acquired rearrangements in&lt;br /&gt;<br /> cancer using genome-wide massively parallel paired-end sequencing. Nature&lt;br /&gt;<br /> Genet. 40, 722&amp;ndash;729 (2008).&lt;br /&gt;<br /> 7. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid&lt;br /&gt;<br /> leukaemia genome. Nature 456, 66&amp;ndash;72 (2008).&lt;br /&gt;<br /> 8. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single&lt;br /&gt;<br /> nucleotide resolution. Nature 461, 809&amp;ndash;813 (2009).&lt;br /&gt;<br /> 9. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and&lt;br /&gt;<br /> xenograft. Nature 464, 999&amp;ndash;1005 (2010).&lt;br /&gt;<br /> 10. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of&lt;br /&gt;<br /> tobacco exposure. Nature 463, 184&amp;ndash;190 (2010).&lt;br /&gt;<br /> 11. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a&lt;br /&gt;<br /> human cancer genome. Nature 463, 191&amp;ndash;196 (2010).&lt;br /&gt;<br /> 12. Reva, B., Antipin, Y. &amp;amp; Sander, C. Determinants of protein function revealed by&lt;br /&gt;<br /> combinatorial entropy optimization. Genome Biol. 8, R232 (2007).&lt;br /&gt;<br /> 13. Dziembowski, A. et al. A single subunit, Dis3, is essentially responsible for yeast&lt;br /&gt;<br /> exosome core activity. Nature Struct. Mol. Biol. 14, 15&amp;ndash;22 (2007).&lt;br /&gt;<br /> 14. Schmid, M. &amp;amp; Jensen, T. H. The exosome: a multipurpose RNA-decay machine.&lt;br /&gt;<br /> Trends Biochem. Sci. 33, 501&amp;ndash;510 (2008).&lt;br /&gt;<br /> 15. Schneider, C., Anderson, J. T. &amp;amp; Tollervey, D. The exosome subunit Rrp44 plays a&lt;br /&gt;<br /> direct role in RNA substrate recognition. Mol. Cell 27, 324&amp;ndash;331 (2007).&lt;br /&gt;<br /> 16. Barbas, A. et al. Determination of key residues for catalysis and RNA cleavage&lt;br /&gt;<br /> specificity: one mutation turns RNase II into a &amp;lsquo;&amp;lsquo;SUPER-ENZYME&amp;rsquo;&amp;rsquo;. J. Biol. Chem.&lt;br /&gt;<br /> 284, 20486&amp;ndash;20498 (2009).&lt;br /&gt;<br /> 17. Ibrahim, H., Wilusz, J. &amp;amp; Wilusz, C. J. RNA recognition by 39-to-59 exonucleases: the&lt;br /&gt;<br /> substrate perspective. Biochim. Biophys. Acta 1779, 256&amp;ndash;265 (2008).&lt;br /&gt;<br /> 18. Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108,&lt;br /&gt;<br /> 2020&amp;ndash;2028 (2006).&lt;br /&gt;<br /> 19. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based&lt;br /&gt;<br /> approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci.&lt;br /&gt;<br /> USA 102, 15545&amp;ndash;15550 (2005).&lt;br /&gt;<br /> 20. Mootha, V. K. et al.PGC-1a-responsive genes involved in oxidative phosphorylation&lt;br /&gt;<br /> are coordinately downregulated in human diabetes. Nature Genet. 34, 267&amp;ndash;273&lt;br /&gt;<br /> (2003).&lt;br /&gt;<br /> 21. Tanay, A., Regev, A. &amp;amp; Shamir, R. Conservation and evolvability in regulatory&lt;br /&gt;<br /> networks: the evolution of ribosomal regulation in yeast. Proc. Natl Acad. Sci. USA&lt;br /&gt;<br /> 102, 7203&amp;ndash;7208 (2005).&lt;br /&gt;<br /> 22. Carrasco, D. R. et al. The differentiation and stress response factor XBP-1 drives&lt;br /&gt;<br /> multiple myeloma pathogenesis. Cancer Cell 11, 349&amp;ndash;360 (2007).&lt;br /&gt;<br /> 23. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism&lt;br /&gt;<br /> with pleomorphic pathology. Neuron 44, 601&amp;ndash;607 (2004).&lt;br /&gt;<br /> 24. Paisa&amp;acute;n-Ruı&amp;acute;z, C. et al. Cloning of the gene containing mutations that cause PARK8-&lt;br /&gt;<br /> linked Parkinson&amp;rsquo;s disease. Neuron 44, 595&amp;ndash;600 (2004).&lt;br /&gt;<br /> 25. Forman, M. S., Lee, V. M. &amp;amp; Trojanowski, J. Q. &amp;lsquo;Unfolding&amp;rsquo; pathways in&lt;br /&gt;<br /> neurodegenerative disease. Trends Neurosci. 26, 407&amp;ndash;410 (2003).&lt;br /&gt;<br /> 26. Masciarelli, S. et al.CHOP-independent apoptosisandpathway-selective induction&lt;br /&gt;<br /> of the UPR in developing plasma cells. Mol. Immunol. 47, 1356&amp;ndash;1365 (2010).&lt;br /&gt;<br /> 27. Cenci, S. &amp;amp; Sitia, R. Managing and exploiting stress in the antibody factory. FEBS&lt;br /&gt;<br /> Lett. 581, 3652&amp;ndash;3657 (2007).&lt;br /&gt;<br /> 28. Todd, D. J., Lee, A. H. &amp;amp; Glimcher, L. H. The endoplasmic reticulumstress response&lt;br /&gt;<br /> in immunity and autoimmunity. Nature Rev. Immunol. 8, 663&amp;ndash;674 (2008).&lt;br /&gt;<br /> 29. Adams, J. The development of proteasome inhibitors as anticancer drugs. Cancer&lt;br /&gt;<br /> Cell 5, 417&amp;ndash;421 (2004).&lt;br /&gt;<br /> 30. Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226&amp;ndash;231&lt;br /&gt;<br /> (2008).&lt;br /&gt;<br /> 31. Mandelbaum, J. et al. BLIMP1 is a tumor suppressor gene frequently disrupted in&lt;br /&gt;<br /> activatedBcell-likediffuse largeBcell lymphoma. Cancer Cell 18,568&amp;ndash;579(2010).&lt;br /&gt;<br /> 32. Pasqualucci, L. et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse largeBcell&lt;br /&gt;<br /> lymphoma. J. Exp. Med. 203, 311&amp;ndash;317 (2006).&lt;br /&gt;<br /> 33. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by&lt;br /&gt;<br /> extinguishing the mature B cell gene expression program. Immunity 17, 51&amp;ndash;62&lt;br /&gt;<br /> (2002).&lt;br /&gt;<br /> 34. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin&lt;br /&gt;<br /> secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607&amp;ndash;620&lt;br /&gt;<br /> (2003).&lt;br /&gt;<br /> 35. Turner, C. A. Jr, Mack, D. H. &amp;amp; Davis, M. M. Blimp-1, a novel zinc finger-containing&lt;br /&gt;<br /> protein that can drive the maturation of B lymphocytes into immunoglobulinsecreting&lt;br /&gt;<br /> cells. Cell 77, 297&amp;ndash;306 (1994).&lt;br /&gt;<br /> 36. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by&lt;br /&gt;<br /> oncogenic mutations of B-RAF. Cell 116, 855&amp;ndash;867 (2004).&lt;br /&gt;<br /> 37. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417,&lt;br /&gt;<br /> 949&amp;ndash;954 (2002).&lt;br /&gt;<br /> 38. Flaherty, K. et al. Phase I study of PLX4032: Proof of concept for V600E BRAF&lt;br /&gt;<br /> mutation as a therapeutic target in human cancer. In 2009 ASCO Meeting (American&lt;br /&gt;<br /> Society of Clinical Oncology, 2009).&lt;br /&gt;<br /> 39. Kim, K. et al. Blockade of the MEK/ERK signalling cascade by AS703026, a novel&lt;br /&gt;<br /> selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and&lt;br /&gt;<br /> in vivo. Br. J. Haematol. 149, 537&amp;ndash;549 (2010).&lt;br /&gt;<br /> 40. Lessard, J. &amp;amp; Sauvageau, G. Polycomb group genes as epigenetic regulators of&lt;br /&gt;<br /> normal and leukemic hemopoiesis. Exp. Hematol. 31, 567&amp;ndash;585 (2003).&lt;br /&gt;<br /> 41. Bernstein, B. E., Meissner, A. &amp;amp; Lander, E. S. Themammalian epigenome. Cell 128,&lt;br /&gt;<br /> 669&amp;ndash;681 (2007).&lt;br /&gt;<br /> 42. Ruf, W. &amp;amp; Mueller, B. M. Thrombin generation and the pathogenesis of cancer.&lt;br /&gt;<br /> Semin. Thromb. Hemost. 32 (suppl. 1), 61&amp;ndash;68 (2006).&lt;br /&gt;<br /> 43. Esumi, N., Fan, D. &amp;amp; Fidler, I. J. Inhibition of murine melanoma experimental&lt;br /&gt;<br /> metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor.&lt;br /&gt;<br /> Cancer Res. 51, 4549&amp;ndash;4556 (1991).&lt;br /&gt;<br /> 44. Migliazza, A. et al. Frequent somatic hypermutation of the 59 noncoding region of&lt;br /&gt;<br /> the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA 92, 12520&amp;ndash;12524&lt;br /&gt;<br /> (1995).&lt;br /&gt;<br /> 45. Zani, V. J. et al. Molecular cloning of complex chromosomal translocation&lt;br /&gt;<br /> t(8;14;12)(q24.1;q32.3;q24.1) in a Burkitt lymphomacell line defines a newgene&lt;br /&gt;<br /> (BCL7A) with homology to caldesmon. Blood 87, 3124&amp;ndash;3134 (1996).&lt;br /&gt;<br /> 46. Zhang, W. et al. Unravelling the hidden heterogeneities of diffuse large B-cell&lt;br /&gt;<br /> lymphoma based on coupled two-way clustering. BMC Genomics 8, 332 (2007).&lt;br /&gt;<br /> 47. Carbone, A. et al. Array-based comparative genomic hybridization in early-stage&lt;br /&gt;<br /> mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A,SMAC/&lt;br /&gt;<br /> DIABLO, and RHOF. Genes Chromosom. Cancer 47, 1067&amp;ndash;1075 (2008).&lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Multiple_myeloma_genomes_sequenced&diff=3622 Multiple myeloma genomes sequenced 2011-03-26T17:52:18Z <p>WikiSysop: </p> <hr /> <div>&lt;h1 class=&quot;article-heading&quot;&gt;Initial genome sequencing and analysis of multiple myeloma&lt;/h1&gt;<br /> &lt;p&gt;Michael A. Chapman,1, 22 &lt;br /&gt;<br /> Michael S. Lawrence,1 &lt;br /&gt;<br /> Jonathan J. Keats,2, 3 &lt;br /&gt;<br /> Kristian Cibulskis,1 &lt;br /&gt;<br /> Carrie Sougnez,1 &lt;br /&gt;<br /> Anna C. Schinzel,4 &lt;br /&gt;<br /> Christina L. Harview,1 &lt;br /&gt;<br /> Jean-Philippe Brunet,1 &lt;br /&gt;<br /> Gregory J. Ahmann,2, 3 &lt;br /&gt;<br /> Mazhar Adli,1, 5 &lt;br /&gt;<br /> Kenneth C. Anderson,3, 4 &lt;br /&gt;<br /> Kristin G. Ardlie,1 &lt;br /&gt;<br /> Daniel Auclair,3, 6 &lt;br /&gt;<br /> Angela Baker,7 &lt;br /&gt;<br /> P. Leif Bergsagel,2, 3 &lt;br /&gt;<br /> Bradley E. Bernstein,1, 5, 8, 9 &lt;br /&gt;<br /> Yotam Drier,1, 10 &lt;br /&gt;<br /> Rafael Fonseca,2, 3 &lt;br /&gt;<br /> Stacey B. Gabriel,1 &lt;br /&gt;<br /> Craig C. Hofmeister,3, 11 &lt;br /&gt;<br /> Sundar Jagannath,3, 12 &lt;br /&gt;<br /> Andrzej J. Jakubowiak,3, 13 &lt;br /&gt;<br /> Amrita Krishnan,3, 14 &lt;br /&gt;<br /> Joan Levy,3, 6 &lt;br /&gt;<br /> Ted Liefeld,1 &lt;br /&gt;<br /> Sagar Lonial,3, 15 Scott Mahan,1 Bunmi Mfuko,3, 6 Stefano Monti,1 Louise M. Perkins,3, 6 Robb Onofrio,1 Trevor J. Pugh,1 S. Vincent Rajkumar,3, 16 Alex H. Ramos,1 David S. Siegel,3, 17 Andrey Sivachenko,1 A. Keith Stewart,2, 3 Suzanne Trudel,3, 18 Ravi Vij,3, 19 Douglas Voet,1 Wendy Winckler,1 Todd Zimmerman,3, 20 John Carpten,7 Jeff Trent,7 William C. Hahn,1, 4, 8 Levi A. Garraway,1, 4 Matthew Meyerson,1, 4, 8 Eric S. Lander,1, 8, 21 Gad Getz1 &amp;amp; Todd R. Golub1, 4, 8, 9 &lt;br /&gt;<br /> &amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;Abstract&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-&amp;kappa;B signalling was indicated by mutations in 11 members of the NF-&amp;kappa;B pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;a href=&quot;http://www.nature.com/nature/journal/v471/n7339/full/nature09837.html&quot;&gt;&lt;span style=&quot;font-size: medium&quot;&gt;http://www.nature.com/nature/journal/v471/n7339/full/nature09837.html&lt;/span&gt;&lt;/a&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;References&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;1. Bergsagel, P. L. &amp;amp; Kuehl, W. M. Molecular pathogenesis and a consequent&lt;br /&gt;<br /> classification of multiple myeloma. J. Clin. Oncol. 23, 6333&amp;ndash;6338 (2005).&lt;br /&gt;<br /> 2. Keats, J. J. et al. Promiscuousmutations activate the noncanonical NF-kBpathway&lt;br /&gt;<br /> in multiple myeloma. Cancer Cell 12, 131&amp;ndash;144 (2007).&lt;br /&gt;<br /> 3. Annunziata, C. M. et al. Frequentengagement of the classicaland alternativeNF-kB&lt;br /&gt;<br /> pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12,&lt;br /&gt;<br /> 115&amp;ndash;130 (2007).&lt;br /&gt;<br /> 4. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene&lt;br /&gt;<br /> UTX in human cancer. Nature Genet. 41, 521&amp;ndash;523 (2009).&lt;br /&gt;<br /> 5. Lee, W. et al. Themutation spectrumrevealed by paired genomesequences froma&lt;br /&gt;<br /> lung cancer patient. Nature 465, 473&amp;ndash;477 (2010).&lt;br /&gt;<br /> 6. Campbell, P. J. et al. Identification of somatically acquired rearrangements in&lt;br /&gt;<br /> cancer using genome-wide massively parallel paired-end sequencing. Nature&lt;br /&gt;<br /> Genet. 40, 722&amp;ndash;729 (2008).&lt;br /&gt;<br /> 7. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid&lt;br /&gt;<br /> leukaemia genome. Nature 456, 66&amp;ndash;72 (2008).&lt;br /&gt;<br /> 8. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single&lt;br /&gt;<br /> nucleotide resolution. Nature 461, 809&amp;ndash;813 (2009).&lt;br /&gt;<br /> 9. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and&lt;br /&gt;<br /> xenograft. Nature 464, 999&amp;ndash;1005 (2010).&lt;br /&gt;<br /> 10. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of&lt;br /&gt;<br /> tobacco exposure. Nature 463, 184&amp;ndash;190 (2010).&lt;br /&gt;<br /> 11. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a&lt;br /&gt;<br /> human cancer genome. Nature 463, 191&amp;ndash;196 (2010).&lt;br /&gt;<br /> 12. Reva, B., Antipin, Y. &amp;amp; Sander, C. Determinants of protein function revealed by&lt;br /&gt;<br /> combinatorial entropy optimization. Genome Biol. 8, R232 (2007).&lt;br /&gt;<br /> 13. Dziembowski, A. et al. A single subunit, Dis3, is essentially responsible for yeast&lt;br /&gt;<br /> exosome core activity. Nature Struct. Mol. Biol. 14, 15&amp;ndash;22 (2007).&lt;br /&gt;<br /> 14. Schmid, M. &amp;amp; Jensen, T. H. The exosome: a multipurpose RNA-decay machine.&lt;br /&gt;<br /> Trends Biochem. Sci. 33, 501&amp;ndash;510 (2008).&lt;br /&gt;<br /> 15. Schneider, C., Anderson, J. T. &amp;amp; Tollervey, D. The exosome subunit Rrp44 plays a&lt;br /&gt;<br /> direct role in RNA substrate recognition. Mol. Cell 27, 324&amp;ndash;331 (2007).&lt;br /&gt;<br /> 16. Barbas, A. et al. Determination of key residues for catalysis and RNA cleavage&lt;br /&gt;<br /> specificity: one mutation turns RNase II into a &amp;lsquo;&amp;lsquo;SUPER-ENZYME&amp;rsquo;&amp;rsquo;. J. Biol. Chem.&lt;br /&gt;<br /> 284, 20486&amp;ndash;20498 (2009).&lt;br /&gt;<br /> 17. Ibrahim, H., Wilusz, J. &amp;amp; Wilusz, C. J. RNA recognition by 39-to-59 exonucleases: the&lt;br /&gt;<br /> substrate perspective. Biochim. Biophys. Acta 1779, 256&amp;ndash;265 (2008).&lt;br /&gt;<br /> 18. Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108,&lt;br /&gt;<br /> 2020&amp;ndash;2028 (2006).&lt;br /&gt;<br /> 19. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based&lt;br /&gt;<br /> approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci.&lt;br /&gt;<br /> USA 102, 15545&amp;ndash;15550 (2005).&lt;br /&gt;<br /> 20. Mootha, V. K. et al.PGC-1a-responsive genes involved in oxidative phosphorylation&lt;br /&gt;<br /> are coordinately downregulated in human diabetes. Nature Genet. 34, 267&amp;ndash;273&lt;br /&gt;<br /> (2003).&lt;br /&gt;<br /> 21. Tanay, A., Regev, A. &amp;amp; Shamir, R. Conservation and evolvability in regulatory&lt;br /&gt;<br /> networks: the evolution of ribosomal regulation in yeast. Proc. Natl Acad. Sci. USA&lt;br /&gt;<br /> 102, 7203&amp;ndash;7208 (2005).&lt;br /&gt;<br /> 22. Carrasco, D. R. et al. The differentiation and stress response factor XBP-1 drives&lt;br /&gt;<br /> multiple myeloma pathogenesis. Cancer Cell 11, 349&amp;ndash;360 (2007).&lt;br /&gt;<br /> 23. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism&lt;br /&gt;<br /> with pleomorphic pathology. Neuron 44, 601&amp;ndash;607 (2004).&lt;br /&gt;<br /> 24. Paisa&amp;acute;n-Ruı&amp;acute;z, C. et al. Cloning of the gene containing mutations that cause PARK8-&lt;br /&gt;<br /> linked Parkinson&amp;rsquo;s disease. Neuron 44, 595&amp;ndash;600 (2004).&lt;br /&gt;<br /> 25. Forman, M. S., Lee, V. M. &amp;amp; Trojanowski, J. Q. &amp;lsquo;Unfolding&amp;rsquo; pathways in&lt;br /&gt;<br /> neurodegenerative disease. Trends Neurosci. 26, 407&amp;ndash;410 (2003).&lt;br /&gt;<br /> 26. Masciarelli, S. et al.CHOP-independent apoptosisandpathway-selective induction&lt;br /&gt;<br /> of the UPR in developing plasma cells. Mol. Immunol. 47, 1356&amp;ndash;1365 (2010).&lt;br /&gt;<br /> 27. Cenci, S. &amp;amp; Sitia, R. Managing and exploiting stress in the antibody factory. FEBS&lt;br /&gt;<br /> Lett. 581, 3652&amp;ndash;3657 (2007).&lt;br /&gt;<br /> 28. Todd, D. J., Lee, A. H. &amp;amp; Glimcher, L. H. The endoplasmic reticulumstress response&lt;br /&gt;<br /> in immunity and autoimmunity. Nature Rev. Immunol. 8, 663&amp;ndash;674 (2008).&lt;br /&gt;<br /> 29. Adams, J. The development of proteasome inhibitors as anticancer drugs. Cancer&lt;br /&gt;<br /> Cell 5, 417&amp;ndash;421 (2004).&lt;br /&gt;<br /> 30. Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226&amp;ndash;231&lt;br /&gt;<br /> (2008).&lt;br /&gt;<br /> 31. Mandelbaum, J. et al. BLIMP1 is a tumor suppressor gene frequently disrupted in&lt;br /&gt;<br /> activatedBcell-likediffuse largeBcell lymphoma. Cancer Cell 18,568&amp;ndash;579(2010).&lt;br /&gt;<br /> 32. Pasqualucci, L. et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse largeBcell&lt;br /&gt;<br /> lymphoma. J. Exp. Med. 203, 311&amp;ndash;317 (2006).&lt;br /&gt;<br /> 33. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by&lt;br /&gt;<br /> extinguishing the mature B cell gene expression program. Immunity 17, 51&amp;ndash;62&lt;br /&gt;<br /> (2002).&lt;br /&gt;<br /> 34. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin&lt;br /&gt;<br /> secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607&amp;ndash;620&lt;br /&gt;<br /> (2003).&lt;br /&gt;<br /> 35. Turner, C. A. Jr, Mack, D. H. &amp;amp; Davis, M. M. Blimp-1, a novel zinc finger-containing&lt;br /&gt;<br /> protein that can drive the maturation of B lymphocytes into immunoglobulinsecreting&lt;br /&gt;<br /> cells. Cell 77, 297&amp;ndash;306 (1994).&lt;br /&gt;<br /> 36. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by&lt;br /&gt;<br /> oncogenic mutations of B-RAF. Cell 116, 855&amp;ndash;867 (2004).&lt;br /&gt;<br /> 37. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417,&lt;br /&gt;<br /> 949&amp;ndash;954 (2002).&lt;br /&gt;<br /> 38. Flaherty, K. et al. Phase I study of PLX4032: Proof of concept for V600E BRAF&lt;br /&gt;<br /> mutation as a therapeutic target in human cancer. In 2009 ASCO Meeting (American&lt;br /&gt;<br /> Society of Clinical Oncology, 2009).&lt;br /&gt;<br /> 39. Kim, K. et al. Blockade of the MEK/ERK signalling cascade by AS703026, a novel&lt;br /&gt;<br /> selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and&lt;br /&gt;<br /> in vivo. Br. J. Haematol. 149, 537&amp;ndash;549 (2010).&lt;br /&gt;<br /> 40. Lessard, J. &amp;amp; Sauvageau, G. Polycomb group genes as epigenetic regulators of&lt;br /&gt;<br /> normal and leukemic hemopoiesis. Exp. Hematol. 31, 567&amp;ndash;585 (2003).&lt;br /&gt;<br /> 41. Bernstein, B. E., Meissner, A. &amp;amp; Lander, E. S. Themammalian epigenome. Cell 128,&lt;br /&gt;<br /> 669&amp;ndash;681 (2007).&lt;br /&gt;<br /> 42. Ruf, W. &amp;amp; Mueller, B. M. Thrombin generation and the pathogenesis of cancer.&lt;br /&gt;<br /> Semin. Thromb. Hemost. 32 (suppl. 1), 61&amp;ndash;68 (2006).&lt;br /&gt;<br /> 43. Esumi, N., Fan, D. &amp;amp; Fidler, I. J. Inhibition of murine melanoma experimental&lt;br /&gt;<br /> metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor.&lt;br /&gt;<br /> Cancer Res. 51, 4549&amp;ndash;4556 (1991).&lt;br /&gt;<br /> 44. Migliazza, A. et al. Frequent somatic hypermutation of the 59 noncoding region of&lt;br /&gt;<br /> the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA 92, 12520&amp;ndash;12524&lt;br /&gt;<br /> (1995).&lt;br /&gt;<br /> 45. Zani, V. J. et al. Molecular cloning of complex chromosomal translocation&lt;br /&gt;<br /> t(8;14;12)(q24.1;q32.3;q24.1) in a Burkitt lymphomacell line defines a newgene&lt;br /&gt;<br /> (BCL7A) with homology to caldesmon. Blood 87, 3124&amp;ndash;3134 (1996).&lt;br /&gt;<br /> 46. Zhang, W. et al. Unravelling the hidden heterogeneities of diffuse large B-cell&lt;br /&gt;<br /> lymphoma based on coupled two-way clustering. BMC Genomics 8, 332 (2007).&lt;br /&gt;<br /> 47. Carbone, A. et al. Array-based comparative genomic hybridization in early-stage&lt;br /&gt;<br /> mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A,SMAC/&lt;br /&gt;<br /> DIABLO, and RHOF. Genes Chromosom. Cancer 47, 1067&amp;ndash;1075 (2008).&lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Multiple_myeloma_genomes_sequenced&diff=3621 Multiple myeloma genomes sequenced 2011-03-26T17:51:59Z <p>WikiSysop: Created page with &quot;&lt;h1 class=&quot;article-heading&quot;&gt;Initial genome sequencing and analysis of multiple myeloma&lt;/h1&gt; &lt;p&gt;Michael A. Chapman,1, 22 &lt;br /&gt; Michael S. Lawrence,1 &lt;br /&gt; Jonathan J. Keats,2, 3...&quot;</p> <hr /> <div>&lt;h1 class=&quot;article-heading&quot;&gt;Initial genome sequencing and analysis of multiple myeloma&lt;/h1&gt;<br /> &lt;p&gt;Michael A. Chapman,1, 22 &lt;br /&gt;<br /> Michael S. Lawrence,1 &lt;br /&gt;<br /> Jonathan J. Keats,2, 3 &lt;br /&gt;<br /> Kristian Cibulskis,1 &lt;br /&gt;<br /> Carrie Sougnez,1 &lt;br /&gt;<br /> Anna C. Schinzel,4 &lt;br /&gt;<br /> Christina L. Harview,1 &lt;br /&gt;<br /> Jean-Philippe Brunet,1 &lt;br /&gt;<br /> Gregory J. Ahmann,2, 3 &lt;br /&gt;<br /> Mazhar Adli,1, 5 &lt;br /&gt;<br /> Kenneth C. Anderson,3, 4 &lt;br /&gt;<br /> Kristin G. Ardlie,1 &lt;br /&gt;<br /> Daniel Auclair,3, 6 &lt;br /&gt;<br /> Angela Baker,7 &lt;br /&gt;<br /> P. Leif Bergsagel,2, 3 &lt;br /&gt;<br /> Bradley E. Bernstein,1, 5, 8, 9 &lt;br /&gt;<br /> Yotam Drier,1, 10 &lt;br /&gt;<br /> Rafael Fonseca,2, 3 &lt;br /&gt;<br /> Stacey B. Gabriel,1 &lt;br /&gt;<br /> Craig C. Hofmeister,3, 11 &lt;br /&gt;<br /> Sundar Jagannath,3, 12 &lt;br /&gt;<br /> Andrzej J. Jakubowiak,3, 13 &lt;br /&gt;<br /> Amrita Krishnan,3, 14 &lt;br /&gt;<br /> Joan Levy,3, 6 &lt;br /&gt;<br /> Ted Liefeld,1 &lt;br /&gt;<br /> Sagar Lonial,3, 15 Scott Mahan,1 Bunmi Mfuko,3, 6 Stefano Monti,1 Louise M. Perkins,3, 6 Robb Onofrio,1 Trevor J. Pugh,1 S. Vincent Rajkumar,3, 16 Alex H. Ramos,1 David S. Siegel,3, 17 Andrey Sivachenko,1 A. Keith Stewart,2, 3 Suzanne Trudel,3, 18 Ravi Vij,3, 19 Douglas Voet,1 Wendy Winckler,1 Todd Zimmerman,3, 20 John Carpten,7 Jeff Trent,7 William C. Hahn,1, 4, 8 Levi A. Garraway,1, 4 Matthew Meyerson,1, 4, 8 Eric S. Lander,1, 8, 21 Gad Getz1 &amp;amp; Todd R. Golub1, 4, 8, 9 &lt;br /&gt;<br /> &amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;Abstract&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-&amp;kappa;B signalling was indicated by mutations in 11 members of the NF-&amp;kappa;B pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;a href=&quot;http://www.nature.com/nature/journal/v471/n7339/full/nature09837.html&quot;&gt;http://www.nature.com/nature/journal/v471/n7339/full/nature09837.html&lt;/a&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;References&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;1. Bergsagel, P. L. &amp;amp; Kuehl, W. M. Molecular pathogenesis and a consequent&lt;br /&gt;<br /> classification of multiple myeloma. J. Clin. Oncol. 23, 6333&amp;ndash;6338 (2005).&lt;br /&gt;<br /> 2. Keats, J. J. et al. Promiscuousmutations activate the noncanonical NF-kBpathway&lt;br /&gt;<br /> in multiple myeloma. Cancer Cell 12, 131&amp;ndash;144 (2007).&lt;br /&gt;<br /> 3. Annunziata, C. M. et al. Frequentengagement of the classicaland alternativeNF-kB&lt;br /&gt;<br /> pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12,&lt;br /&gt;<br /> 115&amp;ndash;130 (2007).&lt;br /&gt;<br /> 4. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene&lt;br /&gt;<br /> UTX in human cancer. Nature Genet. 41, 521&amp;ndash;523 (2009).&lt;br /&gt;<br /> 5. Lee, W. et al. Themutation spectrumrevealed by paired genomesequences froma&lt;br /&gt;<br /> lung cancer patient. Nature 465, 473&amp;ndash;477 (2010).&lt;br /&gt;<br /> 6. Campbell, P. J. et al. Identification of somatically acquired rearrangements in&lt;br /&gt;<br /> cancer using genome-wide massively parallel paired-end sequencing. Nature&lt;br /&gt;<br /> Genet. 40, 722&amp;ndash;729 (2008).&lt;br /&gt;<br /> 7. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid&lt;br /&gt;<br /> leukaemia genome. Nature 456, 66&amp;ndash;72 (2008).&lt;br /&gt;<br /> 8. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single&lt;br /&gt;<br /> nucleotide resolution. Nature 461, 809&amp;ndash;813 (2009).&lt;br /&gt;<br /> 9. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and&lt;br /&gt;<br /> xenograft. Nature 464, 999&amp;ndash;1005 (2010).&lt;br /&gt;<br /> 10. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of&lt;br /&gt;<br /> tobacco exposure. Nature 463, 184&amp;ndash;190 (2010).&lt;br /&gt;<br /> 11. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a&lt;br /&gt;<br /> human cancer genome. Nature 463, 191&amp;ndash;196 (2010).&lt;br /&gt;<br /> 12. Reva, B., Antipin, Y. &amp;amp; Sander, C. Determinants of protein function revealed by&lt;br /&gt;<br /> combinatorial entropy optimization. Genome Biol. 8, R232 (2007).&lt;br /&gt;<br /> 13. Dziembowski, A. et al. A single subunit, Dis3, is essentially responsible for yeast&lt;br /&gt;<br /> exosome core activity. Nature Struct. Mol. Biol. 14, 15&amp;ndash;22 (2007).&lt;br /&gt;<br /> 14. Schmid, M. &amp;amp; Jensen, T. H. The exosome: a multipurpose RNA-decay machine.&lt;br /&gt;<br /> Trends Biochem. Sci. 33, 501&amp;ndash;510 (2008).&lt;br /&gt;<br /> 15. Schneider, C., Anderson, J. T. &amp;amp; Tollervey, D. The exosome subunit Rrp44 plays a&lt;br /&gt;<br /> direct role in RNA substrate recognition. Mol. Cell 27, 324&amp;ndash;331 (2007).&lt;br /&gt;<br /> 16. Barbas, A. et al. Determination of key residues for catalysis and RNA cleavage&lt;br /&gt;<br /> specificity: one mutation turns RNase II into a &amp;lsquo;&amp;lsquo;SUPER-ENZYME&amp;rsquo;&amp;rsquo;. J. Biol. Chem.&lt;br /&gt;<br /> 284, 20486&amp;ndash;20498 (2009).&lt;br /&gt;<br /> 17. Ibrahim, H., Wilusz, J. &amp;amp; Wilusz, C. J. RNA recognition by 39-to-59 exonucleases: the&lt;br /&gt;<br /> substrate perspective. Biochim. Biophys. Acta 1779, 256&amp;ndash;265 (2008).&lt;br /&gt;<br /> 18. Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108,&lt;br /&gt;<br /> 2020&amp;ndash;2028 (2006).&lt;br /&gt;<br /> 19. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based&lt;br /&gt;<br /> approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci.&lt;br /&gt;<br /> USA 102, 15545&amp;ndash;15550 (2005).&lt;br /&gt;<br /> 20. Mootha, V. K. et al.PGC-1a-responsive genes involved in oxidative phosphorylation&lt;br /&gt;<br /> are coordinately downregulated in human diabetes. Nature Genet. 34, 267&amp;ndash;273&lt;br /&gt;<br /> (2003).&lt;br /&gt;<br /> 21. Tanay, A., Regev, A. &amp;amp; Shamir, R. Conservation and evolvability in regulatory&lt;br /&gt;<br /> networks: the evolution of ribosomal regulation in yeast. Proc. Natl Acad. Sci. USA&lt;br /&gt;<br /> 102, 7203&amp;ndash;7208 (2005).&lt;br /&gt;<br /> 22. Carrasco, D. R. et al. The differentiation and stress response factor XBP-1 drives&lt;br /&gt;<br /> multiple myeloma pathogenesis. Cancer Cell 11, 349&amp;ndash;360 (2007).&lt;br /&gt;<br /> 23. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism&lt;br /&gt;<br /> with pleomorphic pathology. Neuron 44, 601&amp;ndash;607 (2004).&lt;br /&gt;<br /> 24. Paisa&amp;acute;n-Ruı&amp;acute;z, C. et al. Cloning of the gene containing mutations that cause PARK8-&lt;br /&gt;<br /> linked Parkinson&amp;rsquo;s disease. Neuron 44, 595&amp;ndash;600 (2004).&lt;br /&gt;<br /> 25. Forman, M. S., Lee, V. M. &amp;amp; Trojanowski, J. Q. &amp;lsquo;Unfolding&amp;rsquo; pathways in&lt;br /&gt;<br /> neurodegenerative disease. Trends Neurosci. 26, 407&amp;ndash;410 (2003).&lt;br /&gt;<br /> 26. Masciarelli, S. et al.CHOP-independent apoptosisandpathway-selective induction&lt;br /&gt;<br /> of the UPR in developing plasma cells. Mol. Immunol. 47, 1356&amp;ndash;1365 (2010).&lt;br /&gt;<br /> 27. Cenci, S. &amp;amp; Sitia, R. Managing and exploiting stress in the antibody factory. FEBS&lt;br /&gt;<br /> Lett. 581, 3652&amp;ndash;3657 (2007).&lt;br /&gt;<br /> 28. Todd, D. J., Lee, A. H. &amp;amp; Glimcher, L. H. The endoplasmic reticulumstress response&lt;br /&gt;<br /> in immunity and autoimmunity. Nature Rev. Immunol. 8, 663&amp;ndash;674 (2008).&lt;br /&gt;<br /> 29. Adams, J. The development of proteasome inhibitors as anticancer drugs. Cancer&lt;br /&gt;<br /> Cell 5, 417&amp;ndash;421 (2004).&lt;br /&gt;<br /> 30. Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226&amp;ndash;231&lt;br /&gt;<br /> (2008).&lt;br /&gt;<br /> 31. Mandelbaum, J. et al. BLIMP1 is a tumor suppressor gene frequently disrupted in&lt;br /&gt;<br /> activatedBcell-likediffuse largeBcell lymphoma. Cancer Cell 18,568&amp;ndash;579(2010).&lt;br /&gt;<br /> 32. Pasqualucci, L. et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse largeBcell&lt;br /&gt;<br /> lymphoma. J. Exp. Med. 203, 311&amp;ndash;317 (2006).&lt;br /&gt;<br /> 33. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by&lt;br /&gt;<br /> extinguishing the mature B cell gene expression program. Immunity 17, 51&amp;ndash;62&lt;br /&gt;<br /> (2002).&lt;br /&gt;<br /> 34. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin&lt;br /&gt;<br /> secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607&amp;ndash;620&lt;br /&gt;<br /> (2003).&lt;br /&gt;<br /> 35. Turner, C. A. Jr, Mack, D. H. &amp;amp; Davis, M. M. Blimp-1, a novel zinc finger-containing&lt;br /&gt;<br /> protein that can drive the maturation of B lymphocytes into immunoglobulinsecreting&lt;br /&gt;<br /> cells. Cell 77, 297&amp;ndash;306 (1994).&lt;br /&gt;<br /> 36. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by&lt;br /&gt;<br /> oncogenic mutations of B-RAF. Cell 116, 855&amp;ndash;867 (2004).&lt;br /&gt;<br /> 37. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417,&lt;br /&gt;<br /> 949&amp;ndash;954 (2002).&lt;br /&gt;<br /> 38. Flaherty, K. et al. Phase I study of PLX4032: Proof of concept for V600E BRAF&lt;br /&gt;<br /> mutation as a therapeutic target in human cancer. In 2009 ASCO Meeting (American&lt;br /&gt;<br /> Society of Clinical Oncology, 2009).&lt;br /&gt;<br /> 39. Kim, K. et al. Blockade of the MEK/ERK signalling cascade by AS703026, a novel&lt;br /&gt;<br /> selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and&lt;br /&gt;<br /> in vivo. Br. J. Haematol. 149, 537&amp;ndash;549 (2010).&lt;br /&gt;<br /> 40. Lessard, J. &amp;amp; Sauvageau, G. Polycomb group genes as epigenetic regulators of&lt;br /&gt;<br /> normal and leukemic hemopoiesis. Exp. Hematol. 31, 567&amp;ndash;585 (2003).&lt;br /&gt;<br /> 41. Bernstein, B. E., Meissner, A. &amp;amp; Lander, E. S. Themammalian epigenome. Cell 128,&lt;br /&gt;<br /> 669&amp;ndash;681 (2007).&lt;br /&gt;<br /> 42. Ruf, W. &amp;amp; Mueller, B. M. Thrombin generation and the pathogenesis of cancer.&lt;br /&gt;<br /> Semin. Thromb. Hemost. 32 (suppl. 1), 61&amp;ndash;68 (2006).&lt;br /&gt;<br /> 43. Esumi, N., Fan, D. &amp;amp; Fidler, I. J. Inhibition of murine melanoma experimental&lt;br /&gt;<br /> metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor.&lt;br /&gt;<br /> Cancer Res. 51, 4549&amp;ndash;4556 (1991).&lt;br /&gt;<br /> 44. Migliazza, A. et al. Frequent somatic hypermutation of the 59 noncoding region of&lt;br /&gt;<br /> the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA 92, 12520&amp;ndash;12524&lt;br /&gt;<br /> (1995).&lt;br /&gt;<br /> 45. Zani, V. J. et al. Molecular cloning of complex chromosomal translocation&lt;br /&gt;<br /> t(8;14;12)(q24.1;q32.3;q24.1) in a Burkitt lymphomacell line defines a newgene&lt;br /&gt;<br /> (BCL7A) with homology to caldesmon. Blood 87, 3124&amp;ndash;3134 (1996).&lt;br /&gt;<br /> 46. Zhang, W. et al. Unravelling the hidden heterogeneities of diffuse large B-cell&lt;br /&gt;<br /> lymphoma based on coupled two-way clustering. BMC Genomics 8, 332 (2007).&lt;br /&gt;<br /> 47. Carbone, A. et al. Array-based comparative genomic hybridization in early-stage&lt;br /&gt;<br /> mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A,SMAC/&lt;br /&gt;<br /> DIABLO, and RHOF. Genes Chromosom. Cancer 47, 1067&amp;ndash;1075 (2008).&lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=MediaWiki:Sidebar&diff=3608 MediaWiki:Sidebar 2011-03-21T01:49:10Z <p>WikiSysop: Blanked the page</p> <hr /> <div></div> WikiSysop http://Genomics.org/index.php?title=Epistatis&diff=3574 Epistatis 2011-03-12T01:20:10Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;b&gt;Epistasis&lt;/b&gt; is the phenomenon where the effects of one gene are modified by one or several other genes, which are sometimes called &lt;b&gt;modifier genes&lt;/b&gt;. The gene whose phenotype is expressed is called &lt;b&gt;epistatic&lt;/b&gt;, while the phenotype altered or suppressed is called &lt;b&gt;hypostatic&lt;/b&gt;. Epistasis can be contrasted with dominance, which is an interaction between alleles at the same gene locus. Epistasis is often studied in relation to Quantitative Trait Loci (QTL) and polygenic inheritance.&lt;/p&gt;<br /> &lt;p&gt;In general, the fitness increment of any one allele depends in a complicated way on many other alleles; but, because of the way that the science of population genetics was developed, evolutionary scientists tend to think of epistasis as the exception to the rule. In the first models of natural selection devised in the early 20th century, each gene was considered to make its own characteristic contribution to fitness, against an average background of other genes. Some introductory college courses still teach population genetics this way.&lt;/p&gt;<br /> &lt;p&gt;Epistasis and &lt;b&gt;genetic interaction&lt;/b&gt; refer to different aspects of the same phenomenon. The term &lt;b&gt;epistasis&lt;/b&gt; is widely used in population genetics and refers especially to the statistical properties of the phenomenon, and does not necessarily imply biochemical interaction between gene products. However, in general epistasis is used to denote the departure from 'independence' of the effects of different genetic loci. Confusion often arises due to the varied interpretation of 'independence' between different branches of biology. For further discussion of the definitions of epistasis, and the history of these definitions, see &lt;sup id=&quot;cite_ref-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[1]&lt;/font&gt;&lt;/sup&gt;.&lt;/p&gt;<br /> &lt;p&gt;Examples of tightly linked genes having epistatic effects on fitness are found in supergenes and the human major histocompatibility complex genes. The effect can occur directly at the genomic level, where one gene could code for a protein preventing transcription of the other gene. Alternatively, the effect can occur at the phenotypic level. For example, the gene causing albinism would hide the gene controlling color of a person's hair. In another example, a gene coding for a widow's peak would be hidden by a gene causing baldness. Fitness epistasis (where the affected trait is fitness) is one cause of linkage disequilibrium.&lt;/p&gt;<br /> &lt;p&gt;Studying genetic interactions can reveal gene function, the nature of the mutations, functional redundancy, and protein interactions. Because protein complexes are responsible for most biological functions, genetic interactions are a powerful tool.&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Classification_by_fitness_or_trait_value&quot; class=&quot;mw-headline&quot;&gt;Classification by fitness or trait value&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;thumb tright&quot;&gt;<br /> &lt;div style=&quot;width: 202px&quot; class=&quot;thumbinner&quot;&gt;&lt;img class=&quot;thumbimage&quot; alt=&quot;&quot; width=&quot;200&quot; height=&quot;157&quot; src=&quot;http://upload.wikimedia.org/wikipedia/commons/thumb/8/86/Synergistic_versus_antagonistic_epistasis.svg/200px-Synergistic_versus_antagonistic_epistasis.svg.png&quot; /&gt;<br /> &lt;div class=&quot;thumbcaption&quot;&gt;<br /> &lt;div class=&quot;magnify&quot;&gt;&lt;img alt=&quot;&quot; width=&quot;15&quot; height=&quot;11&quot; src=&quot;http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png&quot; /&gt;&lt;/div&gt;<br /> Diagram illustrating different relationships between numbers of mutations and fitness. &lt;i&gt;Synergistic&lt;/i&gt; epistasis is the blue line - each mutation has a disproportionately large effect on the organism's fitness. &lt;i&gt;Antagonistic&lt;/i&gt; epistasis is the red line. See Evolution of Sex&lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;p&gt;Two-locus epistatic interactions can be either synergistic (enhancing the effectiveness) or antagonistic (reducing the activity).&lt;sup id=&quot;cite_ref-azevedo_1-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-bonhoeffer_2-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[3]&lt;/font&gt;&lt;/sup&gt; In the example of a haploid organism with genotypes (at two loci) &lt;i&gt;AB&lt;/i&gt;, &lt;i&gt;Ab&lt;/i&gt;, &lt;i&gt;aB&lt;/i&gt; or &lt;i&gt;ab&lt;/i&gt;, we can think of the following trait values where higher values suggest greater expression of the characteristic (the exact values are simply given as examples):&lt;/p&gt;<br /> &lt;p&gt;<br /> &lt;table cellpadding=&quot;2&quot;&gt;<br /> &lt;tbody&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;i&gt;AB&lt;/i&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;i&gt;Ab&lt;/i&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;i&gt;aB&lt;/i&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;i&gt;ab&lt;/i&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;No epistasis (additive across loci)&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;2&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;0&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;Synergistic epistasis&lt;/td&gt;<br /> &lt;td&gt;3&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;0&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;Antagonistic epistasis&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;0&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;/tbody&gt;<br /> &lt;/table&gt;<br /> &lt;/p&gt;<br /> &lt;p&gt;Hence, we can classify thus:&lt;/p&gt;<br /> &lt;p&gt;<br /> &lt;table cellpadding=&quot;2&quot;&gt;<br /> &lt;tbody&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;b&gt;Trait values&lt;/b&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;b&gt;Type of epistasis&lt;/b&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;i&gt;AB&lt;/i&gt; = &lt;i&gt;Ab&lt;/i&gt; + &lt;i&gt;aB&lt;/i&gt; &amp;minus; &lt;i&gt;ab&lt;/i&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;No epistasis, additive inheritance&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;i&gt;AB&lt;/i&gt; &amp;gt; &lt;i&gt;Ab&lt;/i&gt; + &lt;i&gt;aB&lt;/i&gt; &amp;minus; &lt;i&gt;ab&lt;/i&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;Synergistic epistasis&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;i&gt;AB&lt;/i&gt; &amp;lt; &lt;i&gt;Ab&lt;/i&gt; + &lt;i&gt;aB&lt;/i&gt; &amp;minus; &lt;i&gt;ab&lt;/i&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;Antagonistic epistasis&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;/tbody&gt;<br /> &lt;/table&gt;<br /> &lt;/p&gt;<br /> &lt;p&gt;Understanding whether the majority of genetic interactions are synergistic or antagonistic will help solve such problems as the evolution of sex.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Epistasis_and_sex&quot; class=&quot;mw-headline&quot;&gt;Epistasis and sex&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;Negative epistasis and sex are thought to be intimately correlated. Experimentally, this idea has been tested in using digital simulations of asexual and sexual populations. Over time, sexual populations move towards more negative epistasis, or the lowering of fitness by two interacting alleles. It is thought that negative epistasis allows individuals carrying the interacting deleterious mutations to be removed from the populations efficiently. This removes those alleles from the population, resulting in an overall more fit population. This hypothesis was proposed by Alexey Kondrashov, and is sometimes known as the &lt;i&gt;deterministic mutation hypothesis&lt;/i&gt;&lt;sup id=&quot;cite_ref-kondrashov_3-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[4]&lt;/font&gt;&lt;/sup&gt; and has also been tested using artificial gene networks.&lt;sup id=&quot;cite_ref-azevedo_1-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;p&gt;However, the evidence for this hypothesis has not always been straightforward and the model proposed by Kondrashov has been criticized for assuming mutation parameters far from real world observations. For example, see MacCarthy and Bergman &lt;sup id=&quot;cite_ref-4&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[5]&lt;/font&gt;&lt;/sup&gt;. In addition, in those tests which used artificial gene networks, negative epistasis is only found in more densely connected networks&lt;sup id=&quot;cite_ref-azevedo_1-2&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;, whereas empirical evidence indicates that natural gene networks are sparsely connected&lt;sup id=&quot;cite_ref-leclerc_5-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[6]&lt;/font&gt;&lt;/sup&gt;, and theory shows that selection for robustness will favor more sparsely connected and minimally complex networks.&lt;sup id=&quot;cite_ref-leclerc_5-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[6]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Functional_or_mechanistic_classification&quot; class=&quot;mw-headline&quot;&gt;Functional or mechanistic classification&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;b&gt;Genetic suppression&lt;/b&gt; - the double mutant has a less severe phenotype than either single mutant. [This term can also apply to a case where the double mutant has a phenotype intermediate between those of the single mutants, in which case the more severe single mutant phenotype is &amp;quot;suppressed&amp;quot; by the other mutation or genetic condition. For example, in a diploid organism, a hypomorphic (or partial loss-of-function) mutant phenotype can be suppressed by knocking out one copy of a gene that acts oppositely in the same pathway. In this case, the second gene is described as a &amp;quot;dominant suppressor&amp;quot; of the hypomorphic mutant; &amp;quot;dominant&amp;quot; because the effect is seen when one wild-type copy of the suppressor gene is present. For most genes, the phenotype of the heterozygous suppressor mutation by itself would be wild type (because most genes are not haplo-insufficient), so that the double mutant (suppressed) phenotype is intermediate between those of the single mutants.]&lt;/li&gt;<br /> &lt;li&gt;&lt;b&gt;Genetic enhancement&lt;/b&gt; - the double mutant has a more severe phenotype than one predicted by the additive effects of the single mutants.&lt;/li&gt;<br /> &lt;li&gt;&lt;b&gt;Synthetic lethality&lt;/b&gt; or &lt;b&gt;unlinked non-complementation&lt;/b&gt; - two mutations fail to complement and yet do not map to the same locus.&lt;/li&gt;<br /> &lt;li&gt;&lt;b&gt;Intragenic complementation&lt;/b&gt;, &lt;b&gt;allelic complementation&lt;/b&gt;, or &lt;b&gt;interallelic complementation&lt;/b&gt; - two mutations map to the same locus, yet the two alleles complement in the heteroallelic diploid. Causes of intragenic complementation include:<br /> &lt;ul&gt;<br /> &lt;li&gt;homology effects such as transvection, where, for example, an enhancer from one allele acts in &lt;i&gt;trans&lt;/i&gt; to activate transcription from the promoter of the second allele.&lt;/li&gt;<br /> &lt;li&gt;trans-splicing of two mutant RNA molecules to produce a functional RNA.&lt;/li&gt;<br /> &lt;li&gt;At the protein level, another possibility involves proteins that normally function as dimers. In a heteroallelic diploid, two different abnormal proteins could form a functional dimer if each can compensate for the lack of function in the other.&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;See_also&quot; class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;Co-adaptation&lt;/li&gt;<br /> &lt;li&gt;Epistasis and functional genomics&lt;/li&gt;<br /> &lt;li&gt;Mutation&lt;/li&gt;<br /> &lt;li&gt;Quantitative trait locus&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div style=&quot;list-style-type: decimal&quot; class=&quot;reflist&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;cite_note-0&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-0&quot;&gt;^&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Cordell, Heather J. (2002). &amp;quot;Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans&amp;quot;. &lt;i&gt;&lt;a href=&quot;/wiki/Human_Molecular_Genetics&quot;&gt;Human Molecular Genetics&lt;/a&gt;&lt;/i&gt; &lt;b&gt;11&lt;/b&gt; (20): 2463&amp;ndash;8. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1093%2Fhmg%2F11.20.2463&quot;&gt;10.1093/hmg/11.20.2463&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12351582&quot;&gt;12351582&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Epistasis%3A+what+it+means%2C+what+it+doesn%27t+mean%2C+and+statistical+methods+to+detect+it+in+humans&amp;amp;rft.jtitle=%5B%5BHuman+Molecular+Genetics%5D%5D&amp;amp;rft.aulast=Cordell%2C+Heather+J.&amp;amp;rft.au=Cordell%2C+Heather+J.&amp;amp;rft.date=2002&amp;amp;rft.volume=11&amp;amp;rft.issue=20&amp;amp;rft.pages=2463%E2%80%938&amp;amp;rft_id=info:doi/10.1093%2Fhmg%2F11.20.2463&amp;amp;rft_id=info:pmid/12351582&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-azevedo-1&quot;&gt;^ &lt;a href=&quot;#cite_ref-azevedo_1-0&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-azevedo_1-1&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-azevedo_1-2&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;c&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;span class=&quot;citation Journal&quot;&gt;Azevedo R, Lohaus R, Srinivasan S, Dang K, Burch C (2006). &amp;quot;Sexual reproduction selects for robustness and negative epistasis in artificial gene networks&amp;quot;. &lt;i&gt;Nature&lt;/i&gt; &lt;b&gt;440&lt;/b&gt; (7080): 87&amp;ndash;90. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2Fnature04488&quot;&gt;10.1038/nature04488&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16511495&quot;&gt;16511495&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Sexual+reproduction+selects+for+robustness+and+negative+epistasis+in+artificial+gene+networks&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Azevedo+R%2C+Lohaus+R%2C+Srinivasan+S%2C+Dang+K%2C+Burch+C&amp;amp;rft.au=Azevedo+R%2C+Lohaus+R%2C+Srinivasan+S%2C+Dang+K%2C+Burch+C&amp;amp;rft.date=2006&amp;amp;rft.volume=440&amp;amp;rft.issue=7080&amp;amp;rft.pages=87%E2%80%9390&amp;amp;rft_id=info:doi/10.1038%2Fnature04488&amp;amp;rft_id=info:pmid/16511495&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-bonhoeffer-2&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-bonhoeffer_2-0&quot;&gt;^&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Bonhoeffer S, Chappey C, Parkin NT, Whitcomb JM, Petropoulos CJ (2004). &amp;quot;Evidence for positive epistasis in HIV-1&amp;quot;. &lt;i&gt;Science&lt;/i&gt; &lt;b&gt;306&lt;/b&gt; (5701): 1547&amp;ndash;50. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.1101786&quot;&gt;10.1126/science.1101786&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15567861&quot;&gt;15567861&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Evidence+for+positive+epistasis+in+HIV-1&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Bonhoeffer+S%2C+Chappey+C%2C+Parkin+NT%2C+Whitcomb+JM%2C+Petropoulos+CJ&amp;amp;rft.au=Bonhoeffer+S%2C+Chappey+C%2C+Parkin+NT%2C+Whitcomb+JM%2C+Petropoulos+CJ&amp;amp;rft.date=2004&amp;amp;rft.volume=306&amp;amp;rft.issue=5701&amp;amp;rft.pages=1547%E2%80%9350&amp;amp;rft_id=info:doi/10.1126%2Fscience.1101786&amp;amp;rft_id=info:pmid/15567861&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-kondrashov-3&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-kondrashov_3-0&quot;&gt;^&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;A. S. Kondrashov (1988). &amp;quot;Deleterious mutations and the evolution of sexual reproduction&amp;quot;. &lt;i&gt;&lt;a title=&quot;Nature (journal)&quot; href=&quot;/wiki/Nature_(journal)&quot;&gt;Nature&lt;/a&gt;&lt;/i&gt; &lt;b&gt;336&lt;/b&gt; (6198): 435&amp;ndash;440. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F336435a0&quot;&gt;10.1038/336435a0&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3057385&quot;&gt;3057385&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Deleterious+mutations+and+the+evolution+of+sexual+reproduction&amp;amp;rft.jtitle=%5B%5BNature+%28journal%29%7CNature%5D%5D&amp;amp;rft.aulast=A.+S.+Kondrashov&amp;amp;rft.au=A.+S.+Kondrashov&amp;amp;rft.date=1988&amp;amp;rft.volume=336&amp;amp;rft.issue=6198&amp;amp;rft.pages=435%E2%80%93440&amp;amp;rft_id=info:doi/10.1038%2F336435a0&amp;amp;rft_id=info:pmid/3057385&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-4&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-4&quot;&gt;^&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;MacCarthy T, Bergman A. (July 2007). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1931480&quot;&gt;&amp;quot;Coevolution of robustness, epistasis, and recombination favors asexual reproduction&amp;quot;&lt;/a&gt;. &lt;i&gt;&lt;a class=&quot;mw-redirect&quot; title=&quot;Proc Natl Acad Sci U S A&quot; href=&quot;/wiki/Proc_Natl_Acad_Sci_U_S_A&quot;&gt;Proc Natl Acad Sci U S A&lt;/a&gt;&lt;/i&gt; &lt;b&gt;104&lt;/b&gt; (31): 12801&amp;ndash;6. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1073%2Fpnas.0705455104&quot;&gt;10.1073/pnas.0705455104&lt;/a&gt;. &lt;a title=&quot;PubMed Central&quot; href=&quot;/wiki/PubMed_Central&quot;&gt;PMC&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1931480&quot;&gt;1931480&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17646644&quot;&gt;17646644&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1931480&quot;&gt;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1931480&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Coevolution+of+robustness%2C+epistasis%2C+and+recombination+favors+asexual+reproduction&amp;amp;rft.jtitle=%5B%5BProc+Natl+Acad+Sci+U+S+A%5D%5D&amp;amp;rft.aulast=MacCarthy+T%2C+Bergman+A.&amp;amp;rft.au=MacCarthy+T%2C+Bergman+A.&amp;amp;rft.date=July+2007&amp;amp;rft.volume=104&amp;amp;rft.issue=31&amp;amp;rft.pages=12801%E2%80%936&amp;amp;rft_id=info:doi/10.1073%2Fpnas.0705455104&amp;amp;rft_id=info:pmc/1931480&amp;amp;rft_id=info:pmid/17646644&amp;amp;rft_id=http%3A%2F%2Fwww.pubmedcentral.nih.gov%2Farticlerender.fcgi%3Ftool%3Dpmcentrez%26artid%3D1931480&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-leclerc-5&quot;&gt;^ &lt;a href=&quot;#cite_ref-leclerc_5-0&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-leclerc_5-1&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;span class=&quot;citation Journal&quot;&gt;Leclerc R. (August 2008). &amp;quot;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/msb/journal/v4/n1/full/msb200852.html&quot;&gt;Survival of the sparsest: robust gene networks are parsimonious&lt;/a&gt;&amp;quot;. &lt;i&gt;Mol Syst Biol.&lt;/i&gt; &lt;b&gt;4&lt;/b&gt; (213).&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=%5Bhttp%3A%2F%2Fwww.nature.com%2Fmsb%2Fjournal%2Fv4%2Fn1%2Ffull%2Fmsb200852.html+Survival+of+the+sparsest%3A+robust+gene+networks+are+parsimonious%5D&amp;amp;rft.jtitle=Mol+Syst+Biol.&amp;amp;rft.aulast=Leclerc+R.&amp;amp;rft.au=Leclerc+R.&amp;amp;rft.date=August+2008&amp;amp;rft.volume=4&amp;amp;rft.issue=213&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://scienceaid.co.uk/biology/genetics/inheritance.html&quot;&gt;Science Aid: Epistasis&lt;/a&gt; High school (GCSE, Alevel) resource.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.geneticinteractions.org&quot;&gt;GeneticInteractions.org&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.epistasis.org&quot;&gt;Epistasis.org&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=Epistatis&diff=3573 Epistatis 2011-03-12T01:19:58Z <p>WikiSysop: Created page with &quot;&lt;p&gt;&lt;b&gt;Epistasis&lt;/b&gt; is the phenomenon where the effects of one gene are modified by one or several other genes, which are sometimes called &lt;b&gt;modifier genes&lt;/b&gt;. The gene whose p...&quot;</p> <hr /> <div>&lt;p&gt;&lt;b&gt;Epistasis&lt;/b&gt; is the phenomenon where the effects of one gene are modified by one or several other genes, which are sometimes called &lt;b&gt;modifier genes&lt;/b&gt;. The gene whose phenotype is expressed is called &lt;b&gt;epistatic&lt;/b&gt;, while the phenotype altered or suppressed is called &lt;b&gt;hypostatic&lt;/b&gt;. Epistasis can be contrasted with dominance, which is an interaction between alleles at the same gene locus. Epistasis is often studied in relation to Quantitative Trait Loci (QTL) and polygenic inheritance.&lt;/p&gt;<br /> &lt;p&gt;In general, the fitness increment of any one allele depends in a complicated way on many other alleles; but, because of the way that the science of population genetics was developed, evolutionary scientists tend to think of epistasis as the exception to the rule. In the first models of natural selection devised in the early 20th century, each gene was considered to make its own characteristic contribution to fitness, against an average background of other genes. Some introductory college courses still teach population genetics this way.&lt;/p&gt;<br /> &lt;p&gt;Epistasis and &lt;b&gt;genetic interaction&lt;/b&gt; refer to different aspects of the same phenomenon. The term &lt;b&gt;epistasis&lt;/b&gt; is widely used in population genetics and refers especially to the statistical properties of the phenomenon, and does not necessarily imply biochemical interaction between gene products. However, in general epistasis is used to denote the departure from 'independence' of the effects of different genetic loci. Confusion often arises due to the varied interpretation of 'independence' between different branches of biology. For further discussion of the definitions of epistasis, and the history of these definitions, see &lt;sup id=&quot;cite_ref-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[1]&lt;/font&gt;&lt;/sup&gt;.&lt;/p&gt;<br /> &lt;p&gt;Examples of tightly linked genes having epistatic effects on fitness are found in supergenes and the human major histocompatibility complex genes. The effect can occur directly at the genomic level, where one gene could code for a protein preventing transcription of the other gene. Alternatively, the effect can occur at the phenotypic level. For example, the gene causing albinism would hide the gene controlling color of a person's hair. In another example, a gene coding for a widow's peak would be hidden by a gene causing baldness. Fitness epistasis (where the affected trait is fitness) is one cause of linkage disequilibrium.&lt;/p&gt;<br /> &lt;p&gt;Studying genetic interactions can reveal gene function, the nature of the mutations, functional redundancy, and protein interactions. Because protein complexes are responsible for most biological functions, genetic interactions are a powerful tool.&lt;/p&gt;<br /> &lt;p&gt;<br /> &lt;table id=&quot;toc&quot; class=&quot;toc&quot;&gt;<br /> &lt;tbody&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;<br /> &lt;div id=&quot;toctitle&quot;&gt;<br /> &lt;h2&gt;Contents&lt;/h2&gt;<br /> &lt;span class=&quot;toctoggle&quot;&gt;[hide]&lt;/span&gt;&lt;/div&gt;<br /> &lt;ul&gt;<br /> &lt;li class=&quot;toclevel-1 tocsection-1&quot;&gt;&lt;span class=&quot;tocnumber&quot;&gt;1&lt;/span&gt; &lt;span class=&quot;toctext&quot;&gt;Classification by fitness or trait value&lt;/span&gt;&lt;/li&gt;<br /> &lt;li class=&quot;toclevel-1 tocsection-2&quot;&gt;&lt;span class=&quot;tocnumber&quot;&gt;2&lt;/span&gt; &lt;span class=&quot;toctext&quot;&gt;Epistasis and sex&lt;/span&gt;&lt;/li&gt;<br /> &lt;li class=&quot;toclevel-1 tocsection-3&quot;&gt;&lt;span class=&quot;tocnumber&quot;&gt;3&lt;/span&gt; &lt;span class=&quot;toctext&quot;&gt;Functional or mechanistic classification&lt;/span&gt;&lt;/li&gt;<br /> &lt;li class=&quot;toclevel-1 tocsection-4&quot;&gt;&lt;span class=&quot;tocnumber&quot;&gt;4&lt;/span&gt; &lt;span class=&quot;toctext&quot;&gt;See also&lt;/span&gt;&lt;/li&gt;<br /> &lt;li class=&quot;toclevel-1 tocsection-5&quot;&gt;&lt;span class=&quot;tocnumber&quot;&gt;5&lt;/span&gt; &lt;span class=&quot;toctext&quot;&gt;References&lt;/span&gt;&lt;/li&gt;<br /> &lt;li class=&quot;toclevel-1 tocsection-6&quot;&gt;&lt;span class=&quot;tocnumber&quot;&gt;6&lt;/span&gt; &lt;span class=&quot;toctext&quot;&gt;External links&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;/tbody&gt;<br /> &lt;/table&gt;<br /> &lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Classification_by_fitness_or_trait_value&quot; class=&quot;mw-headline&quot;&gt;Classification by fitness or trait value&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;thumb tright&quot;&gt;<br /> &lt;div style=&quot;width: 202px&quot; class=&quot;thumbinner&quot;&gt;&lt;img class=&quot;thumbimage&quot; alt=&quot;&quot; src=&quot;http://upload.wikimedia.org/wikipedia/commons/thumb/8/86/Synergistic_versus_antagonistic_epistasis.svg/200px-Synergistic_versus_antagonistic_epistasis.svg.png&quot; width=&quot;200&quot; height=&quot;157&quot; /&gt;<br /> &lt;div class=&quot;thumbcaption&quot;&gt;<br /> &lt;div class=&quot;magnify&quot;&gt;&lt;img alt=&quot;&quot; src=&quot;http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png&quot; width=&quot;15&quot; height=&quot;11&quot; /&gt;&lt;/div&gt;<br /> Diagram illustrating different relationships between numbers of mutations and fitness. &lt;i&gt;Synergistic&lt;/i&gt; epistasis is the blue line - each mutation has a disproportionately large effect on the organism's fitness. &lt;i&gt;Antagonistic&lt;/i&gt; epistasis is the red line. See Evolution of Sex&lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;p&gt;Two-locus epistatic interactions can be either synergistic (enhancing the effectiveness) or antagonistic (reducing the activity).&lt;sup id=&quot;cite_ref-azevedo_1-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-bonhoeffer_2-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[3]&lt;/font&gt;&lt;/sup&gt; In the example of a haploid organism with genotypes (at two loci) &lt;i&gt;AB&lt;/i&gt;, &lt;i&gt;Ab&lt;/i&gt;, &lt;i&gt;aB&lt;/i&gt; or &lt;i&gt;ab&lt;/i&gt;, we can think of the following trait values where higher values suggest greater expression of the characteristic (the exact values are simply given as examples):&lt;/p&gt;<br /> &lt;p&gt;<br /> &lt;table cellpadding=&quot;2&quot;&gt;<br /> &lt;tbody&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;i&gt;AB&lt;/i&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;i&gt;Ab&lt;/i&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;i&gt;aB&lt;/i&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;i&gt;ab&lt;/i&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;No epistasis (additive across loci)&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;2&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;0&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;Synergistic epistasis&lt;/td&gt;<br /> &lt;td&gt;3&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;0&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;Antagonistic epistasis&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;1&lt;/td&gt;<br /> &lt;td&gt;0&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;/tbody&gt;<br /> &lt;/table&gt;<br /> &lt;/p&gt;<br /> &lt;p&gt;Hence, we can classify thus:&lt;/p&gt;<br /> &lt;p&gt;<br /> &lt;table cellpadding=&quot;2&quot;&gt;<br /> &lt;tbody&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;b&gt;Trait values&lt;/b&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;b&gt;Type of epistasis&lt;/b&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;i&gt;AB&lt;/i&gt; = &lt;i&gt;Ab&lt;/i&gt; + &lt;i&gt;aB&lt;/i&gt; &amp;minus; &lt;i&gt;ab&lt;/i&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;No epistasis, additive inheritance&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;i&gt;AB&lt;/i&gt; &amp;gt; &lt;i&gt;Ab&lt;/i&gt; + &lt;i&gt;aB&lt;/i&gt; &amp;minus; &lt;i&gt;ab&lt;/i&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;Synergistic epistasis&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;i&gt;AB&lt;/i&gt; &amp;lt; &lt;i&gt;Ab&lt;/i&gt; + &lt;i&gt;aB&lt;/i&gt; &amp;minus; &lt;i&gt;ab&lt;/i&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;Antagonistic epistasis&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;/tbody&gt;<br /> &lt;/table&gt;<br /> &lt;/p&gt;<br /> &lt;p&gt;Understanding whether the majority of genetic interactions are synergistic or antagonistic will help solve such problems as the evolution of sex.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Epistasis_and_sex&quot; class=&quot;mw-headline&quot;&gt;Epistasis and sex&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;Negative epistasis and sex are thought to be intimately correlated. Experimentally, this idea has been tested in using digital simulations of asexual and sexual populations. Over time, sexual populations move towards more negative epistasis, or the lowering of fitness by two interacting alleles. It is thought that negative epistasis allows individuals carrying the interacting deleterious mutations to be removed from the populations efficiently. This removes those alleles from the population, resulting in an overall more fit population. This hypothesis was proposed by Alexey Kondrashov, and is sometimes known as the &lt;i&gt;deterministic mutation hypothesis&lt;/i&gt;&lt;sup id=&quot;cite_ref-kondrashov_3-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[4]&lt;/font&gt;&lt;/sup&gt; and has also been tested using artificial gene networks.&lt;sup id=&quot;cite_ref-azevedo_1-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;p&gt;However, the evidence for this hypothesis has not always been straightforward and the model proposed by Kondrashov has been criticized for assuming mutation parameters far from real world observations. For example, see MacCarthy and Bergman &lt;sup id=&quot;cite_ref-4&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[5]&lt;/font&gt;&lt;/sup&gt;. In addition, in those tests which used artificial gene networks, negative epistasis is only found in more densely connected networks&lt;sup id=&quot;cite_ref-azevedo_1-2&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;, whereas empirical evidence indicates that natural gene networks are sparsely connected&lt;sup id=&quot;cite_ref-leclerc_5-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[6]&lt;/font&gt;&lt;/sup&gt;, and theory shows that selection for robustness will favor more sparsely connected and minimally complex networks.&lt;sup id=&quot;cite_ref-leclerc_5-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[6]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Functional_or_mechanistic_classification&quot; class=&quot;mw-headline&quot;&gt;Functional or mechanistic classification&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;b&gt;Genetic suppression&lt;/b&gt; - the double mutant has a less severe phenotype than either single mutant. [This term can also apply to a case where the double mutant has a phenotype intermediate between those of the single mutants, in which case the more severe single mutant phenotype is &amp;quot;suppressed&amp;quot; by the other mutation or genetic condition. For example, in a diploid organism, a hypomorphic (or partial loss-of-function) mutant phenotype can be suppressed by knocking out one copy of a gene that acts oppositely in the same pathway. In this case, the second gene is described as a &amp;quot;dominant suppressor&amp;quot; of the hypomorphic mutant; &amp;quot;dominant&amp;quot; because the effect is seen when one wild-type copy of the suppressor gene is present. For most genes, the phenotype of the heterozygous suppressor mutation by itself would be wild type (because most genes are not haplo-insufficient), so that the double mutant (suppressed) phenotype is intermediate between those of the single mutants.]&lt;/li&gt;<br /> &lt;li&gt;&lt;b&gt;Genetic enhancement&lt;/b&gt; - the double mutant has a more severe phenotype than one predicted by the additive effects of the single mutants.&lt;/li&gt;<br /> &lt;li&gt;&lt;b&gt;Synthetic lethality&lt;/b&gt; or &lt;b&gt;unlinked non-complementation&lt;/b&gt; - two mutations fail to complement and yet do not map to the same locus.&lt;/li&gt;<br /> &lt;li&gt;&lt;b&gt;Intragenic complementation&lt;/b&gt;, &lt;b&gt;allelic complementation&lt;/b&gt;, or &lt;b&gt;interallelic complementation&lt;/b&gt; - two mutations map to the same locus, yet the two alleles complement in the heteroallelic diploid. Causes of intragenic complementation include:<br /> &lt;ul&gt;<br /> &lt;li&gt;homology effects such as transvection, where, for example, an enhancer from one allele acts in &lt;i&gt;trans&lt;/i&gt; to activate transcription from the promoter of the second allele.&lt;/li&gt;<br /> &lt;li&gt;trans-splicing of two mutant RNA molecules to produce a functional RNA.&lt;/li&gt;<br /> &lt;li&gt;At the protein level, another possibility involves proteins that normally function as dimers. In a heteroallelic diploid, two different abnormal proteins could form a functional dimer if each can compensate for the lack of function in the other.&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;See_also&quot; class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;Co-adaptation&lt;/li&gt;<br /> &lt;li&gt;Epistasis and functional genomics&lt;/li&gt;<br /> &lt;li&gt;Mutation&lt;/li&gt;<br /> &lt;li&gt;Quantitative trait locus&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div style=&quot;list-style-type: decimal&quot; class=&quot;reflist&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;cite_note-0&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-0&quot;&gt;^&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Cordell, Heather J. (2002). &amp;quot;Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans&amp;quot;. &lt;i&gt;&lt;a href=&quot;/wiki/Human_Molecular_Genetics&quot;&gt;Human Molecular Genetics&lt;/a&gt;&lt;/i&gt; &lt;b&gt;11&lt;/b&gt; (20): 2463&amp;ndash;8. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1093%2Fhmg%2F11.20.2463&quot; rel=&quot;nofollow&quot;&gt;10.1093/hmg/11.20.2463&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/12351582&quot; rel=&quot;nofollow&quot;&gt;12351582&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Epistasis%3A+what+it+means%2C+what+it+doesn%27t+mean%2C+and+statistical+methods+to+detect+it+in+humans&amp;amp;rft.jtitle=%5B%5BHuman+Molecular+Genetics%5D%5D&amp;amp;rft.aulast=Cordell%2C+Heather+J.&amp;amp;rft.au=Cordell%2C+Heather+J.&amp;amp;rft.date=2002&amp;amp;rft.volume=11&amp;amp;rft.issue=20&amp;amp;rft.pages=2463%E2%80%938&amp;amp;rft_id=info:doi/10.1093%2Fhmg%2F11.20.2463&amp;amp;rft_id=info:pmid/12351582&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-azevedo-1&quot;&gt;^ &lt;a href=&quot;#cite_ref-azevedo_1-0&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-azevedo_1-1&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-azevedo_1-2&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;c&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;span class=&quot;citation Journal&quot;&gt;Azevedo R, Lohaus R, Srinivasan S, Dang K, Burch C (2006). &amp;quot;Sexual reproduction selects for robustness and negative epistasis in artificial gene networks&amp;quot;. &lt;i&gt;Nature&lt;/i&gt; &lt;b&gt;440&lt;/b&gt; (7080): 87&amp;ndash;90. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1038%2Fnature04488&quot; rel=&quot;nofollow&quot;&gt;10.1038/nature04488&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16511495&quot; rel=&quot;nofollow&quot;&gt;16511495&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Sexual+reproduction+selects+for+robustness+and+negative+epistasis+in+artificial+gene+networks&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Azevedo+R%2C+Lohaus+R%2C+Srinivasan+S%2C+Dang+K%2C+Burch+C&amp;amp;rft.au=Azevedo+R%2C+Lohaus+R%2C+Srinivasan+S%2C+Dang+K%2C+Burch+C&amp;amp;rft.date=2006&amp;amp;rft.volume=440&amp;amp;rft.issue=7080&amp;amp;rft.pages=87%E2%80%9390&amp;amp;rft_id=info:doi/10.1038%2Fnature04488&amp;amp;rft_id=info:pmid/16511495&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-bonhoeffer-2&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-bonhoeffer_2-0&quot;&gt;^&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Bonhoeffer S, Chappey C, Parkin NT, Whitcomb JM, Petropoulos CJ (2004). &amp;quot;Evidence for positive epistasis in HIV-1&amp;quot;. &lt;i&gt;Science&lt;/i&gt; &lt;b&gt;306&lt;/b&gt; (5701): 1547&amp;ndash;50. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.1101786&quot; rel=&quot;nofollow&quot;&gt;10.1126/science.1101786&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/15567861&quot; rel=&quot;nofollow&quot;&gt;15567861&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Evidence+for+positive+epistasis+in+HIV-1&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Bonhoeffer+S%2C+Chappey+C%2C+Parkin+NT%2C+Whitcomb+JM%2C+Petropoulos+CJ&amp;amp;rft.au=Bonhoeffer+S%2C+Chappey+C%2C+Parkin+NT%2C+Whitcomb+JM%2C+Petropoulos+CJ&amp;amp;rft.date=2004&amp;amp;rft.volume=306&amp;amp;rft.issue=5701&amp;amp;rft.pages=1547%E2%80%9350&amp;amp;rft_id=info:doi/10.1126%2Fscience.1101786&amp;amp;rft_id=info:pmid/15567861&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-kondrashov-3&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-kondrashov_3-0&quot;&gt;^&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;A. S. Kondrashov (1988). &amp;quot;Deleterious mutations and the evolution of sexual reproduction&amp;quot;. &lt;i&gt;&lt;a title=&quot;Nature (journal)&quot; href=&quot;/wiki/Nature_(journal)&quot;&gt;Nature&lt;/a&gt;&lt;/i&gt; &lt;b&gt;336&lt;/b&gt; (6198): 435&amp;ndash;440. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1038%2F336435a0&quot; rel=&quot;nofollow&quot;&gt;10.1038/336435a0&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/3057385&quot; rel=&quot;nofollow&quot;&gt;3057385&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Deleterious+mutations+and+the+evolution+of+sexual+reproduction&amp;amp;rft.jtitle=%5B%5BNature+%28journal%29%7CNature%5D%5D&amp;amp;rft.aulast=A.+S.+Kondrashov&amp;amp;rft.au=A.+S.+Kondrashov&amp;amp;rft.date=1988&amp;amp;rft.volume=336&amp;amp;rft.issue=6198&amp;amp;rft.pages=435%E2%80%93440&amp;amp;rft_id=info:doi/10.1038%2F336435a0&amp;amp;rft_id=info:pmid/3057385&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-4&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-4&quot;&gt;^&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;MacCarthy T, Bergman A. (July 2007). &lt;a class=&quot;external text&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1931480&quot; rel=&quot;nofollow&quot;&gt;&amp;quot;Coevolution of robustness, epistasis, and recombination favors asexual reproduction&amp;quot;&lt;/a&gt;. &lt;i&gt;&lt;a class=&quot;mw-redirect&quot; title=&quot;Proc Natl Acad Sci U S A&quot; href=&quot;/wiki/Proc_Natl_Acad_Sci_U_S_A&quot;&gt;Proc Natl Acad Sci U S A&lt;/a&gt;&lt;/i&gt; &lt;b&gt;104&lt;/b&gt; (31): 12801&amp;ndash;6. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;doi&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1073%2Fpnas.0705455104&quot; rel=&quot;nofollow&quot;&gt;10.1073/pnas.0705455104&lt;/a&gt;. &lt;a title=&quot;PubMed Central&quot; href=&quot;/wiki/PubMed_Central&quot;&gt;PMC&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.pubmedcentral.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1931480&quot; rel=&quot;nofollow&quot;&gt;1931480&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;PMID&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17646644&quot; rel=&quot;nofollow&quot;&gt;17646644&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1931480&quot; rel=&quot;nofollow&quot;&gt;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1931480&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Coevolution+of+robustness%2C+epistasis%2C+and+recombination+favors+asexual+reproduction&amp;amp;rft.jtitle=%5B%5BProc+Natl+Acad+Sci+U+S+A%5D%5D&amp;amp;rft.aulast=MacCarthy+T%2C+Bergman+A.&amp;amp;rft.au=MacCarthy+T%2C+Bergman+A.&amp;amp;rft.date=July+2007&amp;amp;rft.volume=104&amp;amp;rft.issue=31&amp;amp;rft.pages=12801%E2%80%936&amp;amp;rft_id=info:doi/10.1073%2Fpnas.0705455104&amp;amp;rft_id=info:pmc/1931480&amp;amp;rft_id=info:pmid/17646644&amp;amp;rft_id=http%3A%2F%2Fwww.pubmedcentral.nih.gov%2Farticlerender.fcgi%3Ftool%3Dpmcentrez%26artid%3D1931480&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-leclerc-5&quot;&gt;^ &lt;a href=&quot;#cite_ref-leclerc_5-0&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-leclerc_5-1&quot;&gt;&lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt;&lt;/a&gt; &lt;span class=&quot;citation Journal&quot;&gt;Leclerc R. (August 2008). &amp;quot;&lt;a class=&quot;external text&quot; href=&quot;http://www.nature.com/msb/journal/v4/n1/full/msb200852.html&quot; rel=&quot;nofollow&quot;&gt;Survival of the sparsest: robust gene networks are parsimonious&lt;/a&gt;&amp;quot;. &lt;i&gt;Mol Syst Biol.&lt;/i&gt; &lt;b&gt;4&lt;/b&gt; (213).&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=%5Bhttp%3A%2F%2Fwww.nature.com%2Fmsb%2Fjournal%2Fv4%2Fn1%2Ffull%2Fmsb200852.html+Survival+of+the+sparsest%3A+robust+gene+networks+are+parsimonious%5D&amp;amp;rft.jtitle=Mol+Syst+Biol.&amp;amp;rft.aulast=Leclerc+R.&amp;amp;rft.au=Leclerc+R.&amp;amp;rft.date=August+2008&amp;amp;rft.volume=4&amp;amp;rft.issue=213&amp;amp;rfr_id=info:sid/en.wikipedia.org:Epistasis&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; href=&quot;http://scienceaid.co.uk/biology/genetics/inheritance.html&quot; rel=&quot;nofollow&quot;&gt;Science Aid: Epistasis&lt;/a&gt; High school (GCSE, Alevel) resource.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; href=&quot;http://www.geneticinteractions.org&quot; rel=&quot;nofollow&quot;&gt;GeneticInteractions.org&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; href=&quot;http://www.epistasis.org&quot; rel=&quot;nofollow&quot;&gt;Epistasis.org&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=File:Globe_5.gif&diff=3559 File:Globe 5.gif 2011-03-09T23:32:18Z <p>WikiSysop: uploaded a new version of &amp;quot;File:Globe 5.gif&amp;quot;</p> <hr /> <div></div> WikiSysop http://Genomics.org/index.php?title=Desmond_Tutu_talks_about_his_genome&diff=3524 Desmond Tutu talks about his genome 2011-03-02T01:18:26Z <p>WikiSysop: Blanked the page</p> <hr /> <div></div> WikiSysop http://Genomics.org/index.php?title=Desmond_Tutu_talks_about_his_genome&diff=3523 Desmond Tutu talks about his genome 2011-03-02T01:18:20Z <p>WikiSysop: Created page with &quot;&lt;p&gt;test&lt;/p&gt;&quot;</p> <hr /> <div>&lt;p&gt;test&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Genomic_Democracy&diff=3511 Genomic Democracy 2011-02-17T15:47:21Z <p>WikiSysop: Created page with &quot;&lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;Genomic Democracy &lt;/span&gt;&lt;/p&gt; &lt;p&gt;- Jong Bhak&lt;/p&gt; &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;Genomic Democracy is the democracy of genome sequencing and g...&quot;</p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;Genomic Democracy &lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;- Jong Bhak&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;Genomic Democracy is the democracy of genome sequencing and genomics. Common people have the resources and power to analyze their own genomes for their own health enhancement (whatever way they choose).&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;Personal genomics is the democratization of genomics from the special field to common field.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_Indian_genome&diff=3501 The first Indian genome 2011-02-13T15:46:19Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;[http://timesofindia.indiatimes.com/india/Genome-sequencing-can-be-applied-in-clinical-setting/articleshow/5320708.cms A news article on Indian genome sequencing]&lt;/p&gt;<br /> &lt;p&gt;[http://www.indianexpress.com/news/scientist-who-mapped-first-indian-genome-rem/732990/ Jay Shendure. 20110104]&lt;/p&gt;<br /> &lt;p&gt;[http://vinodscaria.rnabiology.org/indian-genome Indian genome by Vinod Scaria]&lt;/p&gt;<br /> &lt;p&gt;[http://www.deccanchronicle.com/national/scientists-question-human-genome-mapping-claim-894&amp;nbsp;Scientists question Human genome mapping claimDecember 12th, 2009]&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_Indian_genome&diff=3500 The first Indian genome 2011-02-13T15:43:39Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;[http://www.indianexpress.com/news/scientist-who-mapped-first-indian-genome-rem/732990/ Jay Shendure. 20110104]&lt;/p&gt;<br /> &lt;p&gt;[http://vinodscaria.rnabiology.org/indian-genome Indian genome by Vinod Scaria]&lt;/p&gt;<br /> &lt;p&gt;[http://www.deccanchronicle.com/national/scientists-question-human-genome-mapping-claim-894&amp;nbsp;Scientists question Human genome mapping claimDecember 12th, 2009]&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_Indian_genome&diff=3499 The first Indian genome 2011-02-13T15:40:39Z <p>WikiSysop: Created page with &quot;&lt;p&gt;[http://www.deccanchronicle.com/national/scientists-question-human-genome-mapping-claim-894&amp;nbsp;Scientists question Human genome mapping claimDecember 12th, 2009]&lt;/p&gt;&quot;</p> <hr /> <div>&lt;p&gt;[http://www.deccanchronicle.com/national/scientists-question-human-genome-mapping-claim-894&amp;nbsp;Scientists question Human genome mapping claimDecember 12th, 2009]&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_genomes&diff=3498 The first genomes 2011-02-13T15:40:09Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;b&gt;&lt;span style=&quot;font-size: large&quot;&gt;The first genomes in the genomics history.&lt;/span&gt;&lt;/b&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;[[The first human genome]]&amp;nbsp; [[The first Neanderthal genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp; [[The first Caucasian genome]]&amp;nbsp;&amp;nbsp; [[The first Asian genome]]&amp;nbsp; [[The first Chinese genome]]&amp;nbsp; [[The first Korean genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; [[The first individual genome]] Venter's.&amp;nbsp; [[James Watson Genome]]&amp;nbsp;&amp;nbsp; [[The first African Genome]] NA18507&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; [[The first Japanese genome]]&amp;nbsp; [[The first Indian genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;[[The first Orangutan genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;[[The first bacterial genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;[[The first plant genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;[[The first Archae genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;[[The first&amp;nbsp;yeast genome]]: April 1996&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;[[The first animal genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;[[The first mammoth genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;hr /&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;[[Top genomics centers]]&amp;nbsp; |&amp;nbsp; [[Genomics News and Ads Archive|Genomics news]]&amp;nbsp; |&amp;nbsp; [[Genomics people]]&amp;nbsp;&amp;nbsp;|&amp;nbsp; [[Genomics company]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Deep_Divergences_of_Human_Gene_Trees_andModels_of_Human_Origins&diff=3497 Deep Divergences of Human Gene Trees andModels of Human Origins 2011-02-11T15:59:13Z <p>WikiSysop: Created page with &quot;&lt;p&gt;Deep Divergences of Human Gene Trees andModels of Human&lt;br /&gt; Origins&lt;br /&gt; Michael G. B. Blum*,1 and Mattias Jakobsson2&lt;br /&gt; 1Laboratoire des Techniques de l&amp;rsquo;Ing&amp;acute...&quot;</p> <hr /> <div>&lt;p&gt;Deep Divergences of Human Gene Trees andModels of Human&lt;br /&gt;<br /> Origins&lt;br /&gt;<br /> Michael G. B. Blum*,1 and Mattias Jakobsson2&lt;br /&gt;<br /> 1Laboratoire des Techniques de l&amp;rsquo;Ing&amp;acute;enierie M&amp;acute;edicale et de la Complexit&amp;acute;e (TIMC-IMAG), Equipe Biologie Computationnelle et&lt;br /&gt;<br /> Math&amp;acute;ematique (BCM), Centre National de la Recherche Scientifique (CNRS), Universit&amp;acute;e Joseph Fourier (UJF), Grenoble, France&lt;br /&gt;<br /> 2Department of Evolutionary Biology, Uppsala University, Sweden&lt;br /&gt;<br /> *Corresponding author: E-mail: &lt;a href=&quot;mailto:michael.blum@imag.fr&quot;&gt;michael.blum@imag.fr&lt;/a&gt;.&lt;br /&gt;<br /> Associate editor: Sarah Tishkoff&lt;br /&gt;<br /> Abstract&lt;br /&gt;<br /> Two competing hypotheses are at the forefront of the debate on modern human origins. In the first scenario, known as the&lt;br /&gt;<br /> recent Out-of-Africa hypothesis, modern humans arose in Africa about 100,000&amp;ndash;200,000 years ago and spread throughout&lt;br /&gt;<br /> the world by replacing the local archaic human populations. By contrast, the second hypothesis posits substantial gene flow&lt;br /&gt;<br /> between archaic and emerging modern humans. In the last two decades, the young time estimates&amp;mdash;between 100,000 and&lt;br /&gt;<br /> 200,000 years&amp;mdash;of the most recent common ancestors for the mitochondrion and the Y chromosome provided evidence in&lt;br /&gt;<br /> favor of a recent African origin of modern humans. However, the presence of very old lineages for autosomal and X-linked&lt;br /&gt;<br /> genes has often been claimed to be incompatible with a simple, single origin of modern humans. Through the analysis of a&lt;br /&gt;<br /> public DNA sequence database, we find, similar to previous estimates, that the common ancestors of autosomal and X-linked&lt;br /&gt;<br /> genes are indeed very old, living, on average, respectively, 1,500,000 and 1,000,000 years ago. However, contrary to previous&lt;br /&gt;<br /> conclusions, we find that these deep gene genealogies are consistent with the Out-of-Africa scenario provided that the ancestral&lt;br /&gt;<br /> effective population size was approximately 14,000 individuals. We show that an ancient bottleneck in the Middle&lt;br /&gt;<br /> Pleistocene, possibly arising from an ancestral structured population, can reconcile the contradictory findings fromthemitochondrion&lt;br /&gt;<br /> on the one hand, with the autosomes and the X chromosome on the other hand.&lt;br /&gt;<br /> Key words: human origins, time to the most recent common ancestor, TMRCA, archaic admixture, African bottleneck,&lt;br /&gt;<br /> coalescent.&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;a href=&quot;http://mbe.oxfordjournals.org/content/28/2/889.full.pdf+html&quot;&gt;http://mbe.oxfordjournals.org/content/28/2/889.full.pdf+html&lt;/a&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_Neanderthal_genome&diff=3496 The first Neanderthal genome 2011-02-11T15:58:55Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.jtitle=Science&amp;amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1188021&amp;amp;rfr_id=info%3Asid%2Fresearchblogging.org&amp;amp;rft.atitle=A+Draft+Sequence+of+the+Neandertal+Genome&amp;amp;rft.issn=0036-8075&amp;amp;rft.date=2010&amp;amp;rft.volume=328&amp;amp;rft.issue=5979&amp;amp;rft.spage=710&amp;amp;rft.epage=722&amp;amp;rft.artnum=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fdoi%2F10.1126%2Fscience.1188021&amp;amp;rft.au=Green%2C+R.&amp;amp;rft.au=Krause%2C+J.&amp;amp;rft.au=Briggs%2C+A.&amp;amp;rft.au=Maricic%2C+T.&amp;amp;rft.au=Stenzel%2C+U.&amp;amp;rft.au=Kircher%2C+M.&amp;amp;rft.au=Patterson%2C+N.&amp;amp;rft.au=Li%2C+H.&amp;amp;rft.au=Zhai%2C+W.&amp;amp;rft.au=Fritz%2C+M.&amp;amp;rft.au=Hansen%2C+N.&amp;amp;rft.au=Durand%2C+E.&amp;amp;rft.au=Malaspinas%2C+A.&amp;amp;rft.au=Jensen%2C+J.&amp;amp;rft.au=Marques-Bonet%2C+T.&amp;amp;rft.au=Alkan%2C+C.&amp;amp;rft.au=Prufer%2C+K.&amp;amp;rft.au=Meyer%2C+M.&amp;amp;rft.au=Burbano%2C+H.&amp;amp;rft.au=Good%2C+J.&amp;amp;rft.au=Schultz%2C+R.&amp;amp;rft.au=Aximu-Petri%2C+A.&amp;amp;rft.au=Butthof%2C+A.&amp;amp;rft.au=Hober%2C+B.&amp;amp;rft.au=Hoffner%2C+B.&amp;amp;rft.au=Siegemund%2C+M.&amp;amp;rft.au=Weihmann%2C+A.&amp;amp;rft.au=Nusbaum%2C+C.&amp;amp;rft.au=Lander%2C+E.&amp;amp;rft.au=Russ%2C+C.&amp;amp;rft.au=Novod%2C+N.&amp;amp;rft.au=Affourtit%2C+J.&amp;amp;rft.au=Egholm%2C+M.&amp;amp;rft.au=Verna%2C+C.&amp;amp;rft.au=Rudan%2C+P.&amp;amp;rft.au=Brajkovic%2C+D.&amp;amp;rft.au=Kucan%2C+Z.&amp;amp;rft.au=Gusic%2C+I.&amp;amp;rft.au=Doronichev%2C+V.&amp;amp;rft.au=Golovanova%2C+L.&amp;amp;rft.au=Lalueza-Fox%2C+C.&amp;amp;rft.au=de+la+Rasilla%2C+M.&amp;amp;rft.au=Fortea%2C+J.&amp;amp;rft.au=Rosas%2C+A.&amp;amp;rft.au=Schmitz%2C+R.&amp;amp;rft.au=Johnson%2C+P.&amp;amp;rft.au=Eichler%2C+E.&amp;amp;rft.au=Falush%2C+D.&amp;amp;rft.au=Birney%2C+E.&amp;amp;rft.au=Mullikin%2C+J.&amp;amp;rft.au=Slatkin%2C+M.&amp;amp;rft.au=Nielsen%2C+R.&amp;amp;rft.au=Kelso%2C+J.&amp;amp;rft.au=Lachmann%2C+M.&amp;amp;rft.au=Reich%2C+D.&amp;amp;rft.au=Paabo%2C+S.&amp;amp;rfe_dat=bpr3.included=1;bpr3.tags=Anthropology%2CBiology%2CGenomics%2C+Evolutionary+Anthropology%2C+Paleontology%2C+Archeology&quot;&gt;A Draft Sequence of the Neandertal Genome &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.jtitle=Science&amp;amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1188021&amp;amp;rfr_id=info%3Asid%2Fresearchblogging.org&amp;amp;rft.atitle=A+Draft+Sequence+of+the+Neandertal+Genome&amp;amp;rft.issn=0036-8075&amp;amp;rft.date=2010&amp;amp;rft.volume=328&amp;amp;rft.issue=5979&amp;amp;rft.spage=710&amp;amp;rft.epage=722&amp;amp;rft.artnum=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fdoi%2F10.1126%2Fscience.1188021&amp;amp;rft.au=Green%2C+R.&amp;amp;rft.au=Krause%2C+J.&amp;amp;rft.au=Briggs%2C+A.&amp;amp;rft.au=Maricic%2C+T.&amp;amp;rft.au=Stenzel%2C+U.&amp;amp;rft.au=Kircher%2C+M.&amp;amp;rft.au=Patterson%2C+N.&amp;amp;rft.au=Li%2C+H.&amp;amp;rft.au=Zhai%2C+W.&amp;amp;rft.au=Fritz%2C+M.&amp;amp;rft.au=Hansen%2C+N.&amp;amp;rft.au=Durand%2C+E.&amp;amp;rft.au=Malaspinas%2C+A.&amp;amp;rft.au=Jensen%2C+J.&amp;amp;rft.au=Marques-Bonet%2C+T.&amp;amp;rft.au=Alkan%2C+C.&amp;amp;rft.au=Prufer%2C+K.&amp;amp;rft.au=Meyer%2C+M.&amp;amp;rft.au=Burbano%2C+H.&amp;amp;rft.au=Good%2C+J.&amp;amp;rft.au=Schultz%2C+R.&amp;amp;rft.au=Aximu-Petri%2C+A.&amp;amp;rft.au=Butthof%2C+A.&amp;amp;rft.au=Hober%2C+B.&amp;amp;rft.au=Hoffner%2C+B.&amp;amp;rft.au=Siegemund%2C+M.&amp;amp;rft.au=Weihmann%2C+A.&amp;amp;rft.au=Nusbaum%2C+C.&amp;amp;rft.au=Lander%2C+E.&amp;amp;rft.au=Russ%2C+C.&amp;amp;rft.au=Novod%2C+N.&amp;amp;rft.au=Affourtit%2C+J.&amp;amp;rft.au=Egholm%2C+M.&amp;amp;rft.au=Verna%2C+C.&amp;amp;rft.au=Rudan%2C+P.&amp;amp;rft.au=Brajkovic%2C+D.&amp;amp;rft.au=Kucan%2C+Z.&amp;amp;rft.au=Gusic%2C+I.&amp;amp;rft.au=Doronichev%2C+V.&amp;amp;rft.au=Golovanova%2C+L.&amp;amp;rft.au=Lalueza-Fox%2C+C.&amp;amp;rft.au=de+la+Rasilla%2C+M.&amp;amp;rft.au=Fortea%2C+J.&amp;amp;rft.au=Rosas%2C+A.&amp;amp;rft.au=Schmitz%2C+R.&amp;amp;rft.au=Johnson%2C+P.&amp;amp;rft.au=Eichler%2C+E.&amp;amp;rft.au=Falush%2C+D.&amp;amp;rft.au=Birney%2C+E.&amp;amp;rft.au=Mullikin%2C+J.&amp;amp;rft.au=Slatkin%2C+M.&amp;amp;rft.au=Nielsen%2C+R.&amp;amp;rft.au=Kelso%2C+J.&amp;amp;rft.au=Lachmann%2C+M.&amp;amp;rft.au=Reich%2C+D.&amp;amp;rft.au=Paabo%2C+S.&amp;amp;rfe_dat=bpr3.included=1;bpr3.tags=Anthropology%2CBiology%2CGenomics%2C+Evolutionary+Anthropology%2C+Paleontology%2C+Archeology&quot;&gt;&lt;span style=&quot;font-style: italic&quot;&gt;Science&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.jtitle=Science&amp;amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1188021&amp;amp;rfr_id=info%3Asid%2Fresearchblogging.org&amp;amp;rft.atitle=A+Draft+Sequence+of+the+Neandertal+Genome&amp;amp;rft.issn=0036-8075&amp;amp;rft.date=2010&amp;amp;rft.volume=328&amp;amp;rft.issue=5979&amp;amp;rft.spage=710&amp;amp;rft.epage=722&amp;amp;rft.artnum=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fdoi%2F10.1126%2Fscience.1188021&amp;amp;rft.au=Green%2C+R.&amp;amp;rft.au=Krause%2C+J.&amp;amp;rft.au=Briggs%2C+A.&amp;amp;rft.au=Maricic%2C+T.&amp;amp;rft.au=Stenzel%2C+U.&amp;amp;rft.au=Kircher%2C+M.&amp;amp;rft.au=Patterson%2C+N.&amp;amp;rft.au=Li%2C+H.&amp;amp;rft.au=Zhai%2C+W.&amp;amp;rft.au=Fritz%2C+M.&amp;amp;rft.au=Hansen%2C+N.&amp;amp;rft.au=Durand%2C+E.&amp;amp;rft.au=Malaspinas%2C+A.&amp;amp;rft.au=Jensen%2C+J.&amp;amp;rft.au=Marques-Bonet%2C+T.&amp;amp;rft.au=Alkan%2C+C.&amp;amp;rft.au=Prufer%2C+K.&amp;amp;rft.au=Meyer%2C+M.&amp;amp;rft.au=Burbano%2C+H.&amp;amp;rft.au=Good%2C+J.&amp;amp;rft.au=Schultz%2C+R.&amp;amp;rft.au=Aximu-Petri%2C+A.&amp;amp;rft.au=Butthof%2C+A.&amp;amp;rft.au=Hober%2C+B.&amp;amp;rft.au=Hoffner%2C+B.&amp;amp;rft.au=Siegemund%2C+M.&amp;amp;rft.au=Weihmann%2C+A.&amp;amp;rft.au=Nusbaum%2C+C.&amp;amp;rft.au=Lander%2C+E.&amp;amp;rft.au=Russ%2C+C.&amp;amp;rft.au=Novod%2C+N.&amp;amp;rft.au=Affourtit%2C+J.&amp;amp;rft.au=Egholm%2C+M.&amp;amp;rft.au=Verna%2C+C.&amp;amp;rft.au=Rudan%2C+P.&amp;amp;rft.au=Brajkovic%2C+D.&amp;amp;rft.au=Kucan%2C+Z.&amp;amp;rft.au=Gusic%2C+I.&amp;amp;rft.au=Doronichev%2C+V.&amp;amp;rft.au=Golovanova%2C+L.&amp;amp;rft.au=Lalueza-Fox%2C+C.&amp;amp;rft.au=de+la+Rasilla%2C+M.&amp;amp;rft.au=Fortea%2C+J.&amp;amp;rft.au=Rosas%2C+A.&amp;amp;rft.au=Schmitz%2C+R.&amp;amp;rft.au=Johnson%2C+P.&amp;amp;rft.au=Eichler%2C+E.&amp;amp;rft.au=Falush%2C+D.&amp;amp;rft.au=Birney%2C+E.&amp;amp;rft.au=Mullikin%2C+J.&amp;amp;rft.au=Slatkin%2C+M.&amp;amp;rft.au=Nielsen%2C+R.&amp;amp;rft.au=Kelso%2C+J.&amp;amp;rft.au=Lachmann%2C+M.&amp;amp;rft.au=Reich%2C+D.&amp;amp;rft.au=Paabo%2C+S.&amp;amp;rfe_dat=bpr3.included=1;bpr3.tags=Anthropology%2CBiology%2CGenomics%2C+Evolutionary+Anthropology%2C+Paleontology%2C+Archeology&quot;&gt;Green, R., Krause, J., Briggs, A., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M., Hansen, N., Durand, E., Malaspinas, A., Jensen, J., Marques-Bonet, T., Alkan, C., Prufer, K., Meyer, M., Burbano, H., Good, J., Schultz, R., Aximu-Petri, A., Butthof, A., Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Z., Gusic, I., Doronichev, V., Golovanova, L., Lalueza-Fox, C., de la Rasilla, M., Fortea, J., Rosas, A., Schmitz, R., Johnson, P., Eichler, E., Falush, D., Birney, E., Mullikin, J., Slatkin, M., Nielsen, R., Kelso, J., Lachmann, M., Reich, D., &amp;amp; Paabo, S. (2010). &lt;span style=&quot;font-style: italic&quot;&gt;, 328&lt;/span&gt; (5979), 710-722 DOI: &lt;/span&gt;&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.jtitle=Science&amp;amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1188021&amp;amp;rfr_id=info%3Asid%2Fresearchblogging.org&amp;amp;rft.atitle=A+Draft+Sequence+of+the+Neandertal+Genome&amp;amp;rft.issn=0036-8075&amp;amp;rft.date=2010&amp;amp;rft.volume=328&amp;amp;rft.issue=5979&amp;amp;rft.spage=710&amp;amp;rft.epage=722&amp;amp;rft.artnum=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fdoi%2F10.1126%2Fscience.1188021&amp;amp;rft.au=Green%2C+R.&amp;amp;rft.au=Krause%2C+J.&amp;amp;rft.au=Briggs%2C+A.&amp;amp;rft.au=Maricic%2C+T.&amp;amp;rft.au=Stenzel%2C+U.&amp;amp;rft.au=Kircher%2C+M.&amp;amp;rft.au=Patterson%2C+N.&amp;amp;rft.au=Li%2C+H.&amp;amp;rft.au=Zhai%2C+W.&amp;amp;rft.au=Fritz%2C+M.&amp;amp;rft.au=Hansen%2C+N.&amp;amp;rft.au=Durand%2C+E.&amp;amp;rft.au=Malaspinas%2C+A.&amp;amp;rft.au=Jensen%2C+J.&amp;amp;rft.au=Marques-Bonet%2C+T.&amp;amp;rft.au=Alkan%2C+C.&amp;amp;rft.au=Prufer%2C+K.&amp;amp;rft.au=Meyer%2C+M.&amp;amp;rft.au=Burbano%2C+H.&amp;amp;rft.au=Good%2C+J.&amp;amp;rft.au=Schultz%2C+R.&amp;amp;rft.au=Aximu-Petri%2C+A.&amp;amp;rft.au=Butthof%2C+A.&amp;amp;rft.au=Hober%2C+B.&amp;amp;rft.au=Hoffner%2C+B.&amp;amp;rft.au=Siegemund%2C+M.&amp;amp;rft.au=Weihmann%2C+A.&amp;amp;rft.au=Nusbaum%2C+C.&amp;amp;rft.au=Lander%2C+E.&amp;amp;rft.au=Russ%2C+C.&amp;amp;rft.au=Novod%2C+N.&amp;amp;rft.au=Affourtit%2C+J.&amp;amp;rft.au=Egholm%2C+M.&amp;amp;rft.au=Verna%2C+C.&amp;amp;rft.au=Rudan%2C+P.&amp;amp;rft.au=Brajkovic%2C+D.&amp;amp;rft.au=Kucan%2C+Z.&amp;amp;rft.au=Gusic%2C+I.&amp;amp;rft.au=Doronichev%2C+V.&amp;amp;rft.au=Golovanova%2C+L.&amp;amp;rft.au=Lalueza-Fox%2C+C.&amp;amp;rft.au=de+la+Rasilla%2C+M.&amp;amp;rft.au=Fortea%2C+J.&amp;amp;rft.au=Rosas%2C+A.&amp;amp;rft.au=Schmitz%2C+R.&amp;amp;rft.au=Johnson%2C+P.&amp;amp;rft.au=Eichler%2C+E.&amp;amp;rft.au=Falush%2C+D.&amp;amp;rft.au=Birney%2C+E.&amp;amp;rft.au=Mullikin%2C+J.&amp;amp;rft.au=Slatkin%2C+M.&amp;amp;rft.au=Nielsen%2C+R.&amp;amp;rft.au=Kelso%2C+J.&amp;amp;rft.au=Lachmann%2C+M.&amp;amp;rft.au=Reich%2C+D.&amp;amp;rft.au=Paabo%2C+S.&amp;amp;rfe_dat=bpr3.included=1;bpr3.tags=Anthropology%2CBiology%2CGenomics%2C+Evolutionary+Anthropology%2C+Paleontology%2C+Archeology&quot;&gt;&lt;a rev=&quot;review&quot; onclick=&quot;javascript:_gaq.push(['_trackEvent','outbound-article','dx.doi.org']);&quot; href=&quot;http://dx.doi.org/10.1126/science.1188021&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;10.1126/science.1188021&lt;/span&gt;&lt;/a&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;Related papers&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;[[Deep Divergences of Human Gene Trees andModels of Human Origins]]&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Genome&diff=3476 Genome 2011-02-03T08:09:02Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The&amp;nbsp;&lt;strong&gt;genome&lt;/strong&gt; is the entire&amp;nbsp;set of sequences in an organism that&amp;nbsp;encodes information for survival and the&amp;nbsp;continuation of the species it belongs to. &lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Main function of genomes&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The main function of genome is information storaging and processing to form an entity that utilizes energy to keep processing signals to interact with other genomes in the whole eco-system.&lt;/font&gt;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;font size=&quot;3&quot;&gt;The genome is universal in the universe and aliens living&amp;nbsp;on other planets also have genomes. The chemical construction may be slightly different but the information deposition and processing function is the same.&lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The information is usually stored&amp;nbsp;in DNA or RNA in the organisms found on Earth.&lt;br /&gt;<br /> &lt;br /&gt;<br /> The genome is often classified&amp;nbsp;into the protein coding genes and the non-coding sequences of the DNA historically.&lt;sup id=&quot;cite_ref-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;span&gt;[&lt;/span&gt;1&lt;/font&gt;&lt;span&gt;&lt;font size=&quot;3&quot;&gt;]&lt;/font&gt;&lt;br /&gt;<br /> &lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The essence of genome&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The essence of genomes is that it is the foundation of spontaneous information processing network that can utilizes energy in time axis. The genome is a kind of linearly expressed language system.&lt;/font&gt;&lt;/font&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Origin_of_Term&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Origin of Term&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The term was adapted in 1920 by [[Hans Winkler]], Professor of Botany at the University of Hamburg, Germany. In Greek, the word &lt;em&gt;genome&lt;/em&gt; (&amp;gamma;ί&amp;nu;&amp;omicron;&amp;mu;&amp;alpha;&amp;iota;) means I become, I am born, to come into being. &lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The Oxford English Dictionary suggests the name to be a blend of the words &lt;em&gt;&lt;strong&gt;gen&lt;/strong&gt;e&lt;/em&gt; and &lt;em&gt;chromos&lt;strong&gt;ome&lt;/strong&gt;&lt;/em&gt;. A few related &lt;em&gt;-ome&lt;/em&gt; words already existed, such as &lt;em&gt;biome&lt;/em&gt; and &lt;em&gt;rhizome&lt;/em&gt;, forming a vocabulary into which &lt;em&gt;genome&lt;/em&gt; fits systematically.&lt;sup id=&quot;cite_ref-1&quot; class=&quot;reference&quot;&gt;[2]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Overview&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Overview&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Some organisms have multiple copies of chromosomes, diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half of the number of chromosome of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the &lt;em&gt;genome&lt;/em&gt;. The term genome can be applied specifically to mean that stored on a complete set of &lt;em&gt;nuclear DNA&lt;/em&gt; (i.e., the &amp;quot;nuclear genome&amp;quot;) but can also be applied to that stored within organelles that contain their own DNA, as with the &amp;quot;mitochondrial genome&amp;quot; or the &amp;quot;chloroplast genome&amp;quot;. Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements&lt;sup id=&quot;cite_ref-Brock_2-0&quot; class=&quot;reference&quot;&gt;[3]&lt;/sup&gt;. When people say that the genome of a sexually reproducing species has been &amp;quot;sequenced&amp;quot;, typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as &amp;quot;a genome sequence&amp;quot; may be a composite read from the chromosomes of various individuals. In general use, the phrase &amp;quot;genetic makeup&amp;quot; is sometimes used conversationally to mean the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;An analogy to the human genome stored on DNA is that of instructions stored in a library:&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The library would contain 46 books (chromosomes)&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The books range in size from 400 to 3340 pages (genes)&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;which is 48 to 250 million letters (A,C,G,T) per book.&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Hence the library contains over six billion letters total;&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The library fits into a cell nucleus the size of a pinpoint;&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;A copy of the library (all 46 books) is contained in almost every cell of our body.&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Types&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Types&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, &amp;quot;genome&amp;quot; is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, &amp;quot;genome&amp;quot; describes all of the genes and information on non-coding DNA that have the potential to be present.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;In eukaryotes such as plants, protozoa and animals, however, &amp;quot;genome&amp;quot; carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the &amp;quot;mitochondrial genome&amp;quot;. The DNA found within the chloroplast may be referred to as the &amp;quot;plastome&amp;quot;.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Genomes_and_genetic_variation&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genomes and genetic variation&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Note that a genome does not capture the genetic diversity or the genetic polymorphism of a species. For example, the human genome sequence in principle could be determined from just half the information on the DNA of one cell from one individual. To learn what variations in genetic information underlie particular traits or diseases requires comparisons across individuals. This point explains the common usage of &amp;quot;genome&amp;quot; (which parallels a common usage of &amp;quot;gene&amp;quot;) to refer not to the information in any particular DNA sequence, but to a whole family of sequences that share a biological context.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Although this concept may seem counter intuitive, it is the same concept that says there is no particular shape that is the shape of a cheetah. Cheetahs vary, and so do the sequences of their genomes. Yet both the individual animals and their sequences share commonalities, so one can learn something about cheetahs and &amp;quot;cheetah-ness&amp;quot; from a single example of either.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Sequencing_and_mapping&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Sequencing and mapping&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;div class=&quot;rellink boilerplate seealso&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;For more details on this topic, see Genome project.&lt;/font&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant &lt;em&gt;Arabidopsis thaliana&lt;/em&gt;, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage &amp;Phi;-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.&lt;sup id=&quot;cite_ref-3&quot; class=&quot;reference&quot;&gt;[4]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 &lt;em&gt;New York Times&lt;/em&gt; announcement that the full genome of DNA pioneer James D. Watson was deciphered.&lt;sup id=&quot;cite_ref-4&quot; class=&quot;reference&quot;&gt;[5]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.&lt;sup id=&quot;cite_ref-5&quot; class=&quot;reference&quot;&gt;[6]&lt;/sup&gt;&lt;sup id=&quot;cite_ref-6&quot; class=&quot;reference&quot;&gt;[7]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Comparison_of_different_genome_sizes&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Comparison of different genome sizes&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;rellink relarticle mainarticle&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Main article: Genome size&lt;/font&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;<br /> &lt;table id=&quot;sortable_table_id_0&quot; class=&quot;wikitable sortable&quot;&gt;<br /> &lt;tbody&gt;<br /> &lt;tr&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Organism type&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Organism&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Genome size (base pairs)&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;mass - in pg&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Note&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacteriophage MS2&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3,569&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;0.000002&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First sequenced RNA-genome&lt;sup id=&quot;cite_ref-Fiers1976_7-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;8&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;SV40&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;5,224&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-Fiers1978_8-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;9&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Phage &amp;Phi;-X174&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;5,386&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First sequenced DNA-genome&lt;sup id=&quot;cite_ref-Sanger1977_9-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;10&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;HIV&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;9749&lt;sup id=&quot;cite_ref-10&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;11&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Phage &amp;lambda;&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;48,502&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Mimivirus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;1,181,404&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known viral genome&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Haemophilus influenzae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;1,830,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First genome of living organism, July 1995&lt;sup id=&quot;cite_ref-Fleichmann_1995_11-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;12&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Carsonella ruddii&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;159,662&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest non-viral genome.&lt;sup id=&quot;cite_ref-12&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;13&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Buchnera aphidicola&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;600,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Wigglesworthia glossinidia&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;700,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Escherichia coli&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;4,600,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-13&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;14&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Solibacter usitatus&lt;/em&gt; (strain Ellin 6076)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;9,970,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known Bacterial genome&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Amoeboid&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Polychaos dubium&lt;/em&gt; (&lt;em&gt;&amp;quot;Amoeba&amp;quot; dubia&lt;/em&gt;)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;670,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;737&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known genome.&lt;sup id=&quot;cite_ref-Parfrey2008_14-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;15&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Arabidopsis thaliana&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;157,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First plant genome sequenced, December 2000.&lt;sup id=&quot;cite_ref-Greilhuber_15-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;16&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Genlisea margaretae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;63,400,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest recorded flowering plant genome, 2006.&lt;sup id=&quot;cite_ref-Greilhuber_15-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;16&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Fritillaria assyrica&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Populus trichocarpa&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;480,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First tree genome, September 2006&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Moss&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Physcomitrella patens&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;480,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First genome of a bryophyte, January 2008 &lt;sup id=&quot;cite_ref-16&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;17&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Yeast&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Saccharomyces cerevisiae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;12,100,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-17&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;18&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fungus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Aspergillus nidulans&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;30,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Nematode&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Caenorhabditis elegans&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;100,300,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First multicellular animal genome, December 1998&lt;sup id=&quot;cite_ref-18&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;19&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Nematode&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Pratylenchus coffeae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;20,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest animal genome known&lt;sup id=&quot;cite_ref-19&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;20&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Drosophila melanogaster&lt;/em&gt; (fruit fly)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-Adams_2000_20-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;21&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Bombyx mori&lt;/em&gt; (silk moth)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;530,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Apis mellifera&lt;/em&gt; (honey bee)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;236,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fish&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Tetraodon nigroviridis&lt;/em&gt; (type of puffer fish)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;385,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest vertebrate genome known&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Mammal&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Homo sapiens&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3,200,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fish&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Protopterus aethiopicus&lt;/em&gt; (marbled lungfish)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;143&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest vertebrate genome known&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;/tbody&gt;<br /> &lt;/table&gt;<br /> &lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Note:&lt;/em&gt; The DNA from a single (diploid) human cell if the 46 chromosomes were connected end-to-end and straightened, would have a length of ~2 m and a width of ~2.4 nanometers.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Since genomes and their organisms are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multicellular organisms (see Developmental biology). The work is both &lt;em&gt;in vivo&lt;/em&gt; and &lt;em&gt;in silico&lt;/em&gt;.&lt;sup id=&quot;cite_ref-21&quot; class=&quot;reference&quot;&gt;[22]&lt;/sup&gt;&lt;sup id=&quot;cite_ref-22&quot; class=&quot;reference&quot;&gt;[23]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Genome_evolution&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genome evolution&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as &lt;em&gt;chromosome number&lt;/em&gt; (karyotype), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Duplications play a major role in shaping the genome. Duplications may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplications of entire chromosomes or even entire genomes. Such duplications are probably fundamental to the creation of genetic novelty.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Horizontal gene transfer is invoked to explain how there is often extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;References&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div style=&quot;column-count: 2; -moz-column-count: 2; -webkit-column-count: 2&quot; class=&quot;references-small references-column-count references-column-count-2&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;cite_note-0&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; Ridley, M. (2006). &lt;em&gt;Genome&lt;/em&gt;. New York, NY: Harper Perennial. &lt;a class=&quot;internal mw-magiclink-isbn&quot; href=&quot;/wiki/Special:BookSources/0060194979&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN 0-06-019497-9&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-1&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Joshua Lederberg and Alexa T. McCray (2001). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;'Ome Sweet 'Omics -- A Genealogical Treasury of Words&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;The Scientist&lt;/em&gt; &lt;strong&gt;15&lt;/strong&gt; (7)&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=%27Ome+Sweet+%27Omics+--+A+Genealogical+Treasury+of+Words&amp;amp;rft.jtitle=The+Scientist&amp;amp;rft.aulast=Joshua+Lederberg+and+Alexa+T.+McCray&amp;amp;rft.au=Joshua+Lederberg+and+Alexa+T.+McCray&amp;amp;rft.date=2001&amp;amp;rft.volume=15&amp;amp;rft.issue=7&amp;amp;rft_id=http%3A%2F%2Flhncbc.nlm.nih.gov%2Flhc%2Fdocs%2Fpublished%2F2001%2Fpub2001047.pdf&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Brock-2&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Brock_2-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation book&quot;&gt;Madigan M, Martinko J (editors) (2006). &lt;em&gt;Brock Biology of Microorganisms&lt;/em&gt; (11th ed.). Prentice Hall. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-13-144329-1&quot; href=&quot;/wiki/Special:BookSources/0-13-144329-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-13-144329-1&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Brock+Biology+of+Microorganisms&amp;amp;rft.aulast=Madigan+M%2C+Martinko+J+%28editors%29&amp;amp;rft.au=Madigan+M%2C+Martinko+J+%28editors%29&amp;amp;rft.date=2006&amp;amp;rft.edition=11th&amp;amp;rft.pub=Prentice+Hall&amp;amp;rft.isbn=0-13-144329-1&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-3&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-3&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&amp;amp;itool=toolbar&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&amp;amp;itool=toolbar&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-4&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-4&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation news&quot;&gt;Wade, Nicholas (2007-05-31). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome of DNA Pioneer Is Deciphered&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;The New York Times&lt;/em&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved 2010-04-02&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+of+DNA+Pioneer+Is+Deciphered&amp;amp;rft.jtitle=The+New+York+Times&amp;amp;rft.aulast=Wade&amp;amp;rft.aufirst=Nicholas&amp;amp;rft.au=Wade%2C%26%2332%3BNicholas&amp;amp;rft.date=2007-05-31&amp;amp;rft_id=http%3A%2F%2Fwww.nytimes.com%2F2007%2F05%2F31%2Fscience%2F31cnd-gene.html%3Fem%26ex%3D1180843200%26en%3D19e1d55639350b73%26ei%3D5087%250A&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-5&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-5&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-6&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-6&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/About/primer/mapping.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.ncbi.nlm.nih.gov/About/primer/mapping.html&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fiers1976-7&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fiers1976_7-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fiers W, &lt;em&gt;et al.&lt;/em&gt; (1976). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;260&lt;/strong&gt; (5551): 500&amp;ndash;507. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F260500a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/260500a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1264203&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;1264203&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Complete+nucleotide-sequence+of+bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Fiers+W%2C+%27%27et+al.%27%27&amp;amp;rft.au=Fiers+W%2C+%27%27et+al.%27%27&amp;amp;rft.date=1976&amp;amp;rft.volume=260&amp;amp;rft.issue=5551&amp;amp;rft.pages=500%E2%80%93507&amp;amp;rft_id=info:doi/10.1038%2F260500a0&amp;amp;rft_id=info:pmid/1264203&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv260%2Fn5551%2Fabs%2F260500a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fiers1978-8&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fiers1978_8-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fiers W, Contreras R, Haegemann G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M (1978). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Complete nucleotide sequence of SV40 DNA&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;273&lt;/strong&gt; (5658): 113&amp;ndash;120. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F273113a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/273113a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/205802&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;205802&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Complete+nucleotide+sequence+of+SV40+DNA&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Fiers+W%2C+Contreras+R%2C+Haegemann+G%2C+Rogiers+R%2C+Van+de+Voorde+A%2C+Van+Heuverswyn+H%2C+Van+Herreweghe+J%2C+Volckaert+G%2C+Ysebaert+M&amp;amp;rft.au=Fiers+W%2C+Contreras+R%2C+Haegemann+G%2C+Rogiers+R%2C+Van+de+Voorde+A%2C+Van+Heuverswyn+H%2C+Van+Herreweghe+J%2C+Volckaert+G%2C+Ysebaert+M&amp;amp;rft.date=1978&amp;amp;rft.volume=273&amp;amp;rft.issue=5658&amp;amp;rft.pages=113%E2%80%93120&amp;amp;rft_id=info:doi/10.1038%2F273113a0&amp;amp;rft_id=info:pmid/205802&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv273%2Fn5658%2Fabs%2F273113a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Sanger1977-9&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Sanger1977_9-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Nucleotide sequence of bacteriophage phi X174 DNA&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;265&lt;/strong&gt; (5596): 687&amp;ndash;695. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F265687a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/265687a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/870828&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;870828&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Nucleotide+sequence+of+bacteriophage+phi+X174+DNA&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Sanger+F%2C+Air+GM%2C+Barrell+BG%2C+Brown+NL%2C+Coulson+AR%2C+Fiddes+CA%2C+Hutchison+CA%2C+Slocombe+PM%2C+Smith+M&amp;amp;rft.au=Sanger+F%2C+Air+GM%2C+Barrell+BG%2C+Brown+NL%2C+Coulson+AR%2C+Fiddes+CA%2C+Hutchison+CA%2C+Slocombe+PM%2C+Smith+M&amp;amp;rft.date=1977&amp;amp;rft.volume=265&amp;amp;rft.issue=5596&amp;amp;rft.pages=687%E2%80%93695&amp;amp;rft_id=info:doi/10.1038%2F265687a0&amp;amp;rft_id=info:pmid/870828&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv265%2Fn5596%2Fabs%2F265687a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-10&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-10&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://pathmicro.med.sc.edu/lecture/hiv9.htm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;VIROLOGY - HUMAN IMMUNODEFICIENCY VIRUS AND AIDS, STRUCTURE: The Genome AND PROTEINS of HIV&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fleichmann_1995-11&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fleichmann_1995_11-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fleischmann R, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J, Dougherty B, Merrick J (1995). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Whole-genome random sequencing and assembly of Haemophilus influenzae Rd&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;269&lt;/strong&gt; (5223): 496&amp;ndash;512. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.7542800&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.7542800&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7542800&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;7542800&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Whole-genome+random+sequencing+and+assembly+of+Haemophilus+influenzae+Rd&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Fleischmann+R%2C+Adams+M%2C+White+O%2C+Clayton+R%2C+Kirkness+E%2C+Kerlavage+A%2C+Bult+C%2C+Tomb+J%2C+Dougherty+B%2C+Merrick+J&amp;amp;rft.au=Fleischmann+R%2C+Adams+M%2C+White+O%2C+Clayton+R%2C+Kirkness+E%2C+Kerlavage+A%2C+Bult+C%2C+Tomb+J%2C+Dougherty+B%2C+Merrick+J&amp;amp;rft.date=1995&amp;amp;rft.volume=269&amp;amp;rft.issue=5223&amp;amp;rft.pages=496%E2%80%93512&amp;amp;rft_id=info:doi/10.1126%2Fscience.7542800&amp;amp;rft_id=info:pmid/7542800&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F269%2F5223%2F496&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-12&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-12&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Nakabachi A, Yamashita A, Toh H, &lt;em&gt;et al.&lt;/em&gt; (October 2006). &amp;quot;The 160-kilobase genome of the bacterial endosymbiont Carsonella&amp;quot;. &lt;em&gt;Science (journal)&lt;/em&gt; &lt;strong&gt;314&lt;/strong&gt; (5797): 267. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.1134196&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.1134196&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17038615&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;17038615&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+160-kilobase+genome+of+the+bacterial+endosymbiont+Carsonella&amp;amp;rft.jtitle=Science+%28journal%29&amp;amp;rft.aulast=Nakabachi+A%2C+Yamashita+A%2C+Toh+H%2C+%27%27et+al.%27%27&amp;amp;rft.au=Nakabachi+A%2C+Yamashita+A%2C+Toh+H%2C+%27%27et+al.%27%27&amp;amp;rft.date=October+2006&amp;amp;rft.volume=314&amp;amp;rft.issue=5797&amp;amp;rft.pages=267&amp;amp;rft_id=info:doi/10.1126%2Fscience.1134196&amp;amp;rft_id=info:pmid/17038615&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-13&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-13&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Frederick R. Blattner, Guy Plunkett III, et al. (1997). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The Complete Genome Sequence of Escherichia coli K-12&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;277&lt;/strong&gt; (5331): 1453&amp;ndash;1462. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.277.5331.1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.277.5331.1453&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9278503&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;9278503&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+Complete+Genome+Sequence+of+Escherichia+coli+K-12&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Frederick+R.+Blattner%2C+Guy+Plunkett+III%2C+et+al.&amp;amp;rft.au=Frederick+R.+Blattner%2C+Guy+Plunkett+III%2C+et+al.&amp;amp;rft.date=1997&amp;amp;rft.volume=277&amp;amp;rft.issue=5331&amp;amp;rft.pages=1453%E2%80%931462&amp;amp;rft_id=info:doi/10.1126%2Fscience.277.5331.1453&amp;amp;rft_id=info:pmid/9278503&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F277%2F5331%2F1453&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Parfrey2008-14&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Parfrey2008_14-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Parfrey, L.W.; Lahr, D.J.G.; Katz, L.A. (2008). &amp;quot;The Dynamic Nature of Eukaryotic Genomes&amp;quot;. &lt;em&gt;Molecular Biology and Evolution&lt;/em&gt; &lt;strong&gt;25&lt;/strong&gt; (4): 787. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1093%2Fmolbev%2Fmsn032&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1093/molbev/msn032&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18258610&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18258610&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+Dynamic+Nature+of+Eukaryotic+Genomes&amp;amp;rft.jtitle=Molecular+Biology+and+Evolution&amp;amp;rft.aulast=Parfrey%2C+L.W.&amp;amp;rft.au=Parfrey%2C+L.W.&amp;amp;rft.date=2008&amp;amp;rft.volume=25&amp;amp;rft.issue=4&amp;amp;rft.pages=787&amp;amp;rft_id=info:doi/10.1093%2Fmolbev%2Fmsn032&amp;amp;rft_id=info:pmid/18258610&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Greilhuber-15&quot;&gt;^ &lt;a href=&quot;#cite_ref-Greilhuber_15-0&quot;&gt;&lt;sup&gt;&lt;em&gt;&lt;strong&gt;&lt;font color=&quot;#0645ad&quot; size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/strong&gt;&lt;/em&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-Greilhuber_15-1&quot;&gt;&lt;sup&gt;&lt;em&gt;&lt;strong&gt;&lt;font color=&quot;#0645ad&quot; size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/strong&gt;&lt;/em&gt;&lt;/sup&gt;&lt;/a&gt; &lt;span class=&quot;citation Journal&quot;&gt;Greilhuber, J., Borsch, T., M&amp;uuml;ller, K., Worberg, A., Porembski, S., and Barthlott, W. (2006). &amp;quot;Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size&amp;quot;. &lt;em&gt;Plant Biology&lt;/em&gt; &lt;strong&gt;8&lt;/strong&gt; (6): 770&amp;ndash;777. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1055%2Fs-2006-924101&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1055/s-2006-924101&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17203433&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;17203433&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Smallest+angiosperm+genomes+found+in+Lentibulariaceae%2C+with+chromosomes+of+bacterial+size&amp;amp;rft.jtitle=Plant+Biology&amp;amp;rft.aulast=Greilhuber%2C+J.%2C+Borsch%2C+T.%2C+M%C3%BCller%2C+K.%2C+Worberg%2C+A.%2C+Porembski%2C+S.%2C+and+Barthlott%2C+W.&amp;amp;rft.au=Greilhuber%2C+J.%2C+Borsch%2C+T.%2C+M%C3%BCller%2C+K.%2C+Worberg%2C+A.%2C+Porembski%2C+S.%2C+and+Barthlott%2C+W.&amp;amp;rft.date=2006&amp;amp;rft.volume=8&amp;amp;rft.issue=6&amp;amp;rft.pages=770%E2%80%93777&amp;amp;rft_id=info:doi/10.1055%2Fs-2006-924101&amp;amp;rft_id=info:pmid/17203433&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-16&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-16&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; Daniel Lang, Andreas D. Zimmer, Stefan A. Rensing, &lt;a title=&quot;Ralf Reski&quot; href=&quot;/wiki/Ralf_Reski&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Ralf Reski&lt;/font&gt;&lt;/a&gt;(2008): Exploring plant &lt;a title=&quot;Biodiversity&quot; href=&quot;/wiki/Biodiversity&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;biodiversity&lt;/font&gt;&lt;/a&gt;: the Physcomitrella genome and beyond. Trends in Plant Science 13, 542-549. &lt;a class=&quot;external autonumber&quot; rel=&quot;nofollow&quot; href=&quot;http://www.cell.com/trends/plant-science/abstract/S1360-1385(08)00204-5&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;[1]&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-17&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-17&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.yeastgenome.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.yeastgenome.org/&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-18&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-18&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;The &lt;em&gt;C. elegans&lt;/em&gt; Sequencing Consortium (1998). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome sequence of the nematode &lt;em&gt;C. elegans&lt;/em&gt;: a platform for investigating biology&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;&lt;a title=&quot;Science (journal)&quot; href=&quot;/wiki/Science_(journal)&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Science&lt;/font&gt;&lt;/a&gt;&lt;/em&gt; &lt;strong&gt;282&lt;/strong&gt; (5396): 2012&amp;ndash;2018. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.282.5396.2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.282.5396.2012&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9851916&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;9851916&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+sequence+of+the+nematode+%27%27C.+elegans%27%27%3A+a+platform+for+investigating+biology&amp;amp;rft.jtitle=%5B%5BScience+%28journal%29%7CScience%5D%5D&amp;amp;rft.aulast=The+%27%27C.+elegans%27%27+Sequencing+Consortium&amp;amp;rft.au=The+%27%27C.+elegans%27%27+Sequencing+Consortium&amp;amp;rft.date=1998&amp;amp;rft.volume=282&amp;amp;rft.issue=5396&amp;amp;rft.pages=2012%E2%80%932018&amp;amp;rft_id=info:doi/10.1126%2Fscience.282.5396.2012&amp;amp;rft_id=info:pmid/9851916&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F282%2F5396%2F2012&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-19&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-19&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/statistics.php?stats=entire#stats_top&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Gregory, T.R. (2005). Animal Genome Size Database. http://www.genomesize.com.&amp;quot;&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/statistics.php?stats=entire#stats_top&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.genomesize.com/statistics.php?stats=entire#stats_top&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Gregory%2C+T.R.+%282005%29.+Animal+Genome+Size+Database.+http%3A%2F%2Fwww.genomesize.com.&amp;amp;rft.atitle=&amp;amp;rft_id=http%3A%2F%2Fwww.genomesize.com%2Fstatistics.php%3Fstats%3Dentire%23stats_top&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Adams_2000-20&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Adams_2000_20-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Adams MD, Celniker SE, Holt RA, &lt;em&gt;et al.&lt;/em&gt; (2000). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The genome sequence of &lt;em&gt;Drosophila melanogaster&lt;/em&gt;&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;287&lt;/strong&gt; (5461): 2185&amp;ndash;95. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.287.5461.2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.287.5461.2185&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10731132&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10731132&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved 2007-05-25&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+genome+sequence+of+%27%27Drosophila+melanogaster%27%27&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Adams+MD%2C+Celniker+SE%2C+Holt+RA%2C+%27%27et+al.%27%27&amp;amp;rft.au=Adams+MD%2C+Celniker+SE%2C+Holt+RA%2C+%27%27et+al.%27%27&amp;amp;rft.date=2000&amp;amp;rft.volume=287&amp;amp;rft.issue=5461&amp;amp;rft.pages=2185%E2%80%9395&amp;amp;rft_id=info:doi/10.1126%2Fscience.287.5461.2185&amp;amp;rft_id=info:pmid/10731132&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F287%2F5461%2F2185&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-21&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-21&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1324956&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Essential genes of a minimal bacterium.&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Proc Natl Acad Sci USA&lt;/em&gt; &lt;strong&gt;103&lt;/strong&gt; (2): 425&amp;ndash;30. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1073%2Fpnas.0510013103&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1073/pnas.0510013103&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16407165&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;16407165&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Essential+genes+of+a+minimal+bacterium.&amp;amp;rft.jtitle=Proc+Natl+Acad+Sci+USA&amp;amp;rft.aulast=Glass+JI%2C+Assad-Garcia+N%2C+Alperovich+N%2C+Yooseph+S%2C+Lewis+MR%2C+Maruf+M%2C+Hutchison+CA+3rd%2C+Smith+HO%2C+Venter+JC&amp;amp;rft.au=Glass+JI%2C+Assad-Garcia+N%2C+Alperovich+N%2C+Yooseph+S%2C+Lewis+MR%2C+Maruf+M%2C+Hutchison+CA+3rd%2C+Smith+HO%2C+Venter+JC&amp;amp;rft.date=2006&amp;amp;rft.volume=103&amp;amp;rft.issue=2&amp;amp;rft.pages=425%E2%80%9330&amp;amp;rft_id=info:doi/10.1073%2Fpnas.0510013103&amp;amp;rft_id=info:pmid/16407165&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-22&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-22&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Forster AC, Church GM (2006). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1681520&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Towards synthesis of a minimal cell&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Mol Syst Biol.&lt;/em&gt; &lt;strong&gt;2:45&lt;/strong&gt;: 45. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2Fmsb4100090&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/msb4100090&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16924266&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;16924266&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Towards+synthesis+of+a+minimal+cell&amp;amp;rft.jtitle=Mol+Syst+Biol.&amp;amp;rft.aulast=Forster+AC%2C+Church+GM&amp;amp;rft.au=Forster+AC%2C+Church+GM&amp;amp;rft.date=2006&amp;amp;rft.volume=2%3A45&amp;amp;rft.pages=45&amp;amp;rft_id=info:doi/10.1038%2Fmsb4100090&amp;amp;rft_id=info:pmid/16924266&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Benfey, P.; Protopapas, A.D. (2004). &lt;em&gt;Essentials of Genomics&lt;/em&gt;. Prentice Hall.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Essentials+of+Genomics&amp;amp;rft.aulast=Benfey&amp;amp;rft.aufirst=P.&amp;amp;rft.au=Benfey%2C%26%2332%3BP.&amp;amp;rft.date=2004&amp;amp;rft.pub=Prentice+Hall&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Brown, Terence A. (2002). &lt;em&gt;Genomes 2&lt;/em&gt;. Oxford: Bios Scientific Publishers. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/978-1859960295&quot; href=&quot;/wiki/Special:BookSources/978-1859960295&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;978-1859960295&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Genomes+2&amp;amp;rft.aulast=Brown&amp;amp;rft.aufirst=Terence+A.&amp;amp;rft.au=Brown%2C%26%2332%3BTerence+A.&amp;amp;rft.date=2002&amp;amp;rft.place=Oxford&amp;amp;rft.pub=Bios+Scientific+Publishers&amp;amp;rft.isbn=978-1859960295&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Gibson, Greg; Muse, Spencer V. (2004). &lt;em&gt;A Primer of Genome Science&lt;/em&gt; (Second ed.). Sunderland, Mass: Sinauer Assoc. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-87893-234-8&quot; href=&quot;/wiki/Special:BookSources/0-87893-234-8&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-87893-234-8&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=A+Primer+of+Genome+Science&amp;amp;rft.aulast=Gibson&amp;amp;rft.aufirst=Greg&amp;amp;rft.au=Gibson%2C%26%2332%3BGreg&amp;amp;rft.date=2004&amp;amp;rft.edition=Second&amp;amp;rft.place=Sunderland%2C+Mass&amp;amp;rft.pub=Sinauer+Assoc&amp;amp;rft.isbn=0-87893-234-8&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Gregory, T. Ryan (ed) (2005). &lt;em&gt;&lt;a title=&quot;The Evolution of the Genome&quot; href=&quot;/wiki/The_Evolution_of_the_Genome&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;The Evolution of the Genome&lt;/font&gt;&lt;/a&gt;&lt;/em&gt;. Elsevier. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-12-301463-8&quot; href=&quot;/wiki/Special:BookSources/0-12-301463-8&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-12-301463-8&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Gregory&amp;amp;rft.aufirst=T.+Ryan+%28ed%29&amp;amp;rft.au=Gregory%2C%26%2332%3BT.+Ryan+%28ed%29&amp;amp;rft.date=2005&amp;amp;rft.pub=Elsevier&amp;amp;rft.isbn=0-12-301463-8&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Reece, Richard J. (2004). &lt;em&gt;Analysis of Genes and Genomes&lt;/em&gt;. Chichester: John Wiley &amp;amp; Sons. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-470-84379-9&quot; href=&quot;/wiki/Special:BookSources/0-470-84379-9&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-470-84379-9&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Analysis+of+Genes+and+Genomes&amp;amp;rft.aulast=Reece&amp;amp;rft.aufirst=Richard+J.&amp;amp;rft.au=Reece%2C%26%2332%3BRichard+J.&amp;amp;rft.date=2004&amp;amp;rft.place=Chichester&amp;amp;rft.pub=John+Wiley+%26+Sons&amp;amp;rft.isbn=0-470-84379-9&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Saccone, Cecilia; Pesole, Graziano (2003). &lt;em&gt;Handbook of Comparative Genomics&lt;/em&gt;. Chichester: John Wiley &amp;amp; Sons. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-471-39128-X&quot; href=&quot;/wiki/Special:BookSources/0-471-39128-X&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-471-39128-X&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Handbook+of+Comparative+Genomics&amp;amp;rft.aulast=Saccone&amp;amp;rft.aufirst=Cecilia&amp;amp;rft.au=Saccone%2C%26%2332%3BCecilia&amp;amp;rft.date=2003&amp;amp;rft.place=Chichester&amp;amp;rft.pub=John+Wiley+%26+Sons&amp;amp;rft.isbn=0-471-39128-X&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Werner, E. (2003). &amp;quot;In silico multicellular systems biology and minimal genomes&amp;quot;. &lt;em&gt;Drug Discov Today&lt;/em&gt; &lt;strong&gt;8&lt;/strong&gt; (24): 1121&amp;ndash;1127. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1016%2FS1359-6446%2803%2902918-0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1016/S1359-6446(03)02918-0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14678738&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;14678738&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=In+silico+multicellular+systems+biology+and+minimal+genomes&amp;amp;rft.jtitle=Drug+Discov+Today&amp;amp;rft.aulast=Werner&amp;amp;rft.aufirst=E.&amp;amp;rft.au=Werner%2C%26%2332%3BE.&amp;amp;rft.date=2003&amp;amp;rft.volume=8&amp;amp;rft.issue=24&amp;amp;rft.pages=1121%E2%80%931127&amp;amp;rft_id=info:doi/10.1016%2FS1359-6446%2803%2902918-0&amp;amp;rft_id=info:pmid/14678738&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;font color=&quot;#3366bb&quot;&gt;[http://genomics.org Genomics.org]&lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;[http://omics.org Omics.org]&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://learn.genetics.utah.edu/content/begin/dna/builddna/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Build a DNA Molecule&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/articles/02_01/Sizing_genomes.shtml&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Some comparative genome sizes&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.dnai.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;DNA Interactive: The History of DNA Science&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.dnaftb.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;DNA From The Beginning&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genome.gov/10001772&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;All About The Human Genome Project from Genome.gov&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Animal genome size database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.rbgkew.org.uk/cval/homepage.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Plant genome size database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesonline.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GOLD:Genomes OnLine Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;The Genome News Network&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;NCBI Entrez Genome Project database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;NCBI Genome Primer&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://news.bbc.co.uk/1/hi/sci/tech/4994088.stm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;BBC News - Final genome 'chapter' published&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;https://www.crops.org/genome/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;The Plant Genome&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://img.jgi.doe.gov/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;IMG&lt;/font&gt;&lt;/a&gt; The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://camera.calit2.net/index.php/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;CAMERA&lt;/font&gt;&lt;/a&gt; Cyberinfrastructure for Metagenomics, data repository and bioinformatics tools for metagenomic research&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genecards.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GeneCards&lt;/font&gt;&lt;/a&gt; an integrated database of human genes.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://genome.igib.res.in/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Genome@IGIB&lt;/font&gt;&lt;/a&gt; Resources and News on the Zebrafish Genome Project @ IGIB.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.geknome.com&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GeKnome Technologies Next-Gen Sequencing Data Analysis&lt;/font&gt;&lt;/a&gt; Next-Gen Sequencing Data Analysis for &lt;a title=&quot;Illumina&quot; href=&quot;/wiki/Illumina&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Illumina&lt;/font&gt;&lt;/a&gt; and &lt;a title=&quot;454&quot; href=&quot;/wiki/454&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;454&lt;/font&gt;&lt;/a&gt; Service from GeKnome Technologies.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://ascb.org/ibioseminars/brenner/brenner1.cfm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;What Genomes Can Tell Us About the Past&lt;/font&gt;&lt;/a&gt; - lecture by &lt;a title=&quot;Sydney Brenner&quot; href=&quot;/wiki/Sydney_Brenner&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Sydney Brenner&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.imame.org/form/genome--mid80-frz.htm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Genome metaphor, reflecting from formal-net hierarchies, and software binaries&lt;/font&gt;&lt;/a&gt;.&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=Genome&diff=3475 Genome 2011-02-03T08:08:10Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The&amp;nbsp;&lt;strong&gt;genome&lt;/strong&gt; is the entire&amp;nbsp;set of sequences in an organism that&amp;nbsp;encodes information for survival and the&amp;nbsp;continuation of the species it belongs to. &lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Main function of genomes&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The main function of genome is information storaging and processing to form an entity that utilizes energy to keep processing signals to interact with other genomes in the whole eco-system.&lt;/font&gt;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;font size=&quot;3&quot;&gt;The genome is universal in the universe and aliens living&amp;nbsp;on other planets also have genomes. The chemical construction may be slightly different but the information deposition and processing function is the same.&lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The information is usually stored&amp;nbsp;in DNA or RNA in the organisms found on Earth.&lt;br /&gt;<br /> &lt;br /&gt;<br /> The genome is often classified&amp;nbsp;into the protein coding genes and the non-coding sequences of the DNA historically.&lt;sup id=&quot;cite_ref-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;span&gt;[&lt;/span&gt;1&lt;/font&gt;&lt;span&gt;&lt;font size=&quot;3&quot;&gt;]&lt;/font&gt;&lt;br /&gt;<br /> &lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The essence of genome&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The essence of genomes is that it is the foundation of spontaneous information processing network that can utilizes energy in time axis. The genome is a kind of linearly expressed language system.&lt;/font&gt;&lt;/font&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Origin_of_Term&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Origin of Term&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The term was adapted in 1920 by [[Hans Winkler]], Professor of Botany at the University of Hamburg, Germany. In Greek, the word &lt;em&gt;genome&lt;/em&gt; (&amp;gamma;ί&amp;nu;&amp;omicron;&amp;mu;&amp;alpha;&amp;iota;) means I become, I am born, to come into being. &lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The Oxford English Dictionary suggests the name to be a blend of the words &lt;em&gt;&lt;strong&gt;gen&lt;/strong&gt;e&lt;/em&gt; and &lt;em&gt;chromos&lt;strong&gt;ome&lt;/strong&gt;&lt;/em&gt;. A few related &lt;em&gt;-ome&lt;/em&gt; words already existed, such as &lt;em&gt;biome&lt;/em&gt; and &lt;em&gt;rhizome&lt;/em&gt;, forming a vocabulary into which &lt;em&gt;genome&lt;/em&gt; fits systematically.&lt;sup id=&quot;cite_ref-1&quot; class=&quot;reference&quot;&gt;[2]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Overview&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Overview&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Some organisms have multiple copies of chromosomes, diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half of the number of chromosome of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the &lt;em&gt;genome&lt;/em&gt;. The term genome can be applied specifically to mean that stored on a complete set of &lt;em&gt;nuclear DNA&lt;/em&gt; (i.e., the &amp;quot;nuclear genome&amp;quot;) but can also be applied to that stored within organelles that contain their own DNA, as with the &amp;quot;mitochondrial genome&amp;quot; or the &amp;quot;chloroplast genome&amp;quot;. Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements&lt;sup id=&quot;cite_ref-Brock_2-0&quot; class=&quot;reference&quot;&gt;[3]&lt;/sup&gt;. When people say that the genome of a sexually reproducing species has been &amp;quot;sequenced&amp;quot;, typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as &amp;quot;a genome sequence&amp;quot; may be a composite read from the chromosomes of various individuals. In general use, the phrase &amp;quot;genetic makeup&amp;quot; is sometimes used conversationally to mean the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;An analogy to the human genome stored on DNA is that of instructions stored in a library:&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The library would contain 46 books (chromosomes)&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The books range in size from 400 to 3340 pages (genes)&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;which is 48 to 250 million letters (A,C,G,T) per book.&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Hence the library contains over six billion letters total;&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The library fits into a cell nucleus the size of a pinpoint;&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;A copy of the library (all 46 books) is contained in almost every cell of our body.&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Types&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Types&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, &amp;quot;genome&amp;quot; is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, &amp;quot;genome&amp;quot; describes all of the genes and information on non-coding DNA that have the potential to be present.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;In eukaryotes such as plants, protozoa and animals, however, &amp;quot;genome&amp;quot; carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the &amp;quot;mitochondrial genome&amp;quot;. The DNA found within the chloroplast may be referred to as the &amp;quot;plastome&amp;quot;.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Genomes_and_genetic_variation&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genomes and genetic variation&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Note that a genome does not capture the genetic diversity or the genetic polymorphism of a species. For example, the human genome sequence in principle could be determined from just half the information on the DNA of one cell from one individual. To learn what variations in genetic information underlie particular traits or diseases requires comparisons across individuals. This point explains the common usage of &amp;quot;genome&amp;quot; (which parallels a common usage of &amp;quot;gene&amp;quot;) to refer not to the information in any particular DNA sequence, but to a whole family of sequences that share a biological context.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Although this concept may seem counter intuitive, it is the same concept that says there is no particular shape that is the shape of a cheetah. Cheetahs vary, and so do the sequences of their genomes. Yet both the individual animals and their sequences share commonalities, so one can learn something about cheetahs and &amp;quot;cheetah-ness&amp;quot; from a single example of either.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Sequencing_and_mapping&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Sequencing and mapping&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;div class=&quot;rellink boilerplate seealso&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;For more details on this topic, see Genome project.&lt;/font&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant &lt;em&gt;Arabidopsis thaliana&lt;/em&gt;, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage &amp;Phi;-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.&lt;sup id=&quot;cite_ref-3&quot; class=&quot;reference&quot;&gt;[4]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 &lt;em&gt;New York Times&lt;/em&gt; announcement that the full genome of DNA pioneer James D. Watson was deciphered.&lt;sup id=&quot;cite_ref-4&quot; class=&quot;reference&quot;&gt;[5]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.&lt;sup id=&quot;cite_ref-5&quot; class=&quot;reference&quot;&gt;[6]&lt;/sup&gt;&lt;sup id=&quot;cite_ref-6&quot; class=&quot;reference&quot;&gt;[7]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Comparison_of_different_genome_sizes&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Comparison of different genome sizes&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;rellink relarticle mainarticle&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Main article: Genome size&lt;/font&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;<br /> &lt;table id=&quot;sortable_table_id_0&quot; class=&quot;wikitable sortable&quot;&gt;<br /> &lt;tbody&gt;<br /> &lt;tr&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Organism type&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Organism&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Genome size (base pairs)&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;mass - in pg&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Note&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacteriophage MS2&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3,569&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;0.000002&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First sequenced RNA-genome&lt;sup id=&quot;cite_ref-Fiers1976_7-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;8&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;SV40&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;5,224&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-Fiers1978_8-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;9&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Phage &amp;Phi;-X174&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;5,386&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First sequenced DNA-genome&lt;sup id=&quot;cite_ref-Sanger1977_9-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;10&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;HIV&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;9749&lt;sup id=&quot;cite_ref-10&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;11&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Phage &amp;lambda;&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;48,502&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Mimivirus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;1,181,404&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known viral genome&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Haemophilus influenzae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;1,830,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First genome of living organism, July 1995&lt;sup id=&quot;cite_ref-Fleichmann_1995_11-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;12&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Carsonella ruddii&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;159,662&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest non-viral genome.&lt;sup id=&quot;cite_ref-12&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;13&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Buchnera aphidicola&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;600,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Wigglesworthia glossinidia&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;700,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Escherichia coli&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;4,600,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-13&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;14&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Solibacter usitatus&lt;/em&gt; (strain Ellin 6076)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;9,970,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known Bacterial genome&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Amoeboid&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Polychaos dubium&lt;/em&gt; (&lt;em&gt;&amp;quot;Amoeba&amp;quot; dubia&lt;/em&gt;)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;670,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;737&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known genome.&lt;sup id=&quot;cite_ref-Parfrey2008_14-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;15&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Arabidopsis thaliana&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;157,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First plant genome sequenced, December 2000.&lt;sup id=&quot;cite_ref-Greilhuber_15-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;16&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Genlisea margaretae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;63,400,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest recorded flowering plant genome, 2006.&lt;sup id=&quot;cite_ref-Greilhuber_15-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;16&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Fritillaria assyrica&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Populus trichocarpa&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;480,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First tree genome, September 2006&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Moss&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Physcomitrella patens&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;480,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First genome of a bryophyte, January 2008 &lt;sup id=&quot;cite_ref-16&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;17&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Yeast&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Saccharomyces cerevisiae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;12,100,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-17&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;18&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fungus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Aspergillus nidulans&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;30,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Nematode&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Caenorhabditis elegans&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;100,300,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First multicellular animal genome, December 1998&lt;sup id=&quot;cite_ref-18&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;19&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Nematode&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Pratylenchus coffeae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;20,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest animal genome known&lt;sup id=&quot;cite_ref-19&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;20&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Drosophila melanogaster&lt;/em&gt; (fruit fly)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-Adams_2000_20-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;21&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Bombyx mori&lt;/em&gt; (silk moth)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;530,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Apis mellifera&lt;/em&gt; (honey bee)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;236,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fish&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Tetraodon nigroviridis&lt;/em&gt; (type of puffer fish)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;385,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest vertebrate genome known&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Mammal&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Homo sapiens&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3,200,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fish&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Protopterus aethiopicus&lt;/em&gt; (marbled lungfish)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;143&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest vertebrate genome known&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;/tbody&gt;<br /> &lt;/table&gt;<br /> &lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Note:&lt;/em&gt; The DNA from a single (diploid) human cell if the 46 chromosomes were connected end-to-end and straightened, would have a length of ~2 m and a width of ~2.4 nanometers.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Since genomes and their organisms are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multicellular organisms (see Developmental biology). The work is both &lt;em&gt;in vivo&lt;/em&gt; and &lt;em&gt;in silico&lt;/em&gt;.&lt;sup id=&quot;cite_ref-21&quot; class=&quot;reference&quot;&gt;[22]&lt;/sup&gt;&lt;sup id=&quot;cite_ref-22&quot; class=&quot;reference&quot;&gt;[23]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Genome_evolution&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genome evolution&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as &lt;em&gt;chromosome number&lt;/em&gt; (karyotype), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Duplications play a major role in shaping the genome. Duplications may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplications of entire chromosomes or even entire genomes. Such duplications are probably fundamental to the creation of genetic novelty.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Horizontal gene transfer is invoked to explain how there is often extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;References&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div style=&quot;column-count: 2; -moz-column-count: 2; -webkit-column-count: 2&quot; class=&quot;references-small references-column-count references-column-count-2&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;cite_note-0&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; Ridley, M. (2006). &lt;em&gt;Genome&lt;/em&gt;. New York, NY: Harper Perennial. &lt;a class=&quot;internal mw-magiclink-isbn&quot; href=&quot;/wiki/Special:BookSources/0060194979&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN 0-06-019497-9&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-1&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Joshua Lederberg and Alexa T. McCray (2001). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;'Ome Sweet 'Omics -- A Genealogical Treasury of Words&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;The Scientist&lt;/em&gt; &lt;strong&gt;15&lt;/strong&gt; (7)&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=%27Ome+Sweet+%27Omics+--+A+Genealogical+Treasury+of+Words&amp;amp;rft.jtitle=The+Scientist&amp;amp;rft.aulast=Joshua+Lederberg+and+Alexa+T.+McCray&amp;amp;rft.au=Joshua+Lederberg+and+Alexa+T.+McCray&amp;amp;rft.date=2001&amp;amp;rft.volume=15&amp;amp;rft.issue=7&amp;amp;rft_id=http%3A%2F%2Flhncbc.nlm.nih.gov%2Flhc%2Fdocs%2Fpublished%2F2001%2Fpub2001047.pdf&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Brock-2&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Brock_2-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation book&quot;&gt;Madigan M, Martinko J (editors) (2006). &lt;em&gt;Brock Biology of Microorganisms&lt;/em&gt; (11th ed.). Prentice Hall. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-13-144329-1&quot; href=&quot;/wiki/Special:BookSources/0-13-144329-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-13-144329-1&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Brock+Biology+of+Microorganisms&amp;amp;rft.aulast=Madigan+M%2C+Martinko+J+%28editors%29&amp;amp;rft.au=Madigan+M%2C+Martinko+J+%28editors%29&amp;amp;rft.date=2006&amp;amp;rft.edition=11th&amp;amp;rft.pub=Prentice+Hall&amp;amp;rft.isbn=0-13-144329-1&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-3&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-3&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&amp;amp;itool=toolbar&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&amp;amp;itool=toolbar&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-4&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-4&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation news&quot;&gt;Wade, Nicholas (2007-05-31). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome of DNA Pioneer Is Deciphered&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;The New York Times&lt;/em&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved 2010-04-02&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+of+DNA+Pioneer+Is+Deciphered&amp;amp;rft.jtitle=The+New+York+Times&amp;amp;rft.aulast=Wade&amp;amp;rft.aufirst=Nicholas&amp;amp;rft.au=Wade%2C%26%2332%3BNicholas&amp;amp;rft.date=2007-05-31&amp;amp;rft_id=http%3A%2F%2Fwww.nytimes.com%2F2007%2F05%2F31%2Fscience%2F31cnd-gene.html%3Fem%26ex%3D1180843200%26en%3D19e1d55639350b73%26ei%3D5087%250A&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-5&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-5&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-6&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-6&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/About/primer/mapping.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.ncbi.nlm.nih.gov/About/primer/mapping.html&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fiers1976-7&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fiers1976_7-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fiers W, &lt;em&gt;et al.&lt;/em&gt; (1976). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;260&lt;/strong&gt; (5551): 500&amp;ndash;507. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F260500a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/260500a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1264203&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;1264203&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Complete+nucleotide-sequence+of+bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Fiers+W%2C+%27%27et+al.%27%27&amp;amp;rft.au=Fiers+W%2C+%27%27et+al.%27%27&amp;amp;rft.date=1976&amp;amp;rft.volume=260&amp;amp;rft.issue=5551&amp;amp;rft.pages=500%E2%80%93507&amp;amp;rft_id=info:doi/10.1038%2F260500a0&amp;amp;rft_id=info:pmid/1264203&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv260%2Fn5551%2Fabs%2F260500a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fiers1978-8&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fiers1978_8-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fiers W, Contreras R, Haegemann G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M (1978). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Complete nucleotide sequence of SV40 DNA&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;273&lt;/strong&gt; (5658): 113&amp;ndash;120. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F273113a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/273113a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/205802&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;205802&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Complete+nucleotide+sequence+of+SV40+DNA&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Fiers+W%2C+Contreras+R%2C+Haegemann+G%2C+Rogiers+R%2C+Van+de+Voorde+A%2C+Van+Heuverswyn+H%2C+Van+Herreweghe+J%2C+Volckaert+G%2C+Ysebaert+M&amp;amp;rft.au=Fiers+W%2C+Contreras+R%2C+Haegemann+G%2C+Rogiers+R%2C+Van+de+Voorde+A%2C+Van+Heuverswyn+H%2C+Van+Herreweghe+J%2C+Volckaert+G%2C+Ysebaert+M&amp;amp;rft.date=1978&amp;amp;rft.volume=273&amp;amp;rft.issue=5658&amp;amp;rft.pages=113%E2%80%93120&amp;amp;rft_id=info:doi/10.1038%2F273113a0&amp;amp;rft_id=info:pmid/205802&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv273%2Fn5658%2Fabs%2F273113a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Sanger1977-9&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Sanger1977_9-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Nucleotide sequence of bacteriophage phi X174 DNA&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;265&lt;/strong&gt; (5596): 687&amp;ndash;695. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F265687a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/265687a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/870828&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;870828&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Nucleotide+sequence+of+bacteriophage+phi+X174+DNA&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Sanger+F%2C+Air+GM%2C+Barrell+BG%2C+Brown+NL%2C+Coulson+AR%2C+Fiddes+CA%2C+Hutchison+CA%2C+Slocombe+PM%2C+Smith+M&amp;amp;rft.au=Sanger+F%2C+Air+GM%2C+Barrell+BG%2C+Brown+NL%2C+Coulson+AR%2C+Fiddes+CA%2C+Hutchison+CA%2C+Slocombe+PM%2C+Smith+M&amp;amp;rft.date=1977&amp;amp;rft.volume=265&amp;amp;rft.issue=5596&amp;amp;rft.pages=687%E2%80%93695&amp;amp;rft_id=info:doi/10.1038%2F265687a0&amp;amp;rft_id=info:pmid/870828&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv265%2Fn5596%2Fabs%2F265687a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-10&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-10&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://pathmicro.med.sc.edu/lecture/hiv9.htm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;VIROLOGY - HUMAN IMMUNODEFICIENCY VIRUS AND AIDS, STRUCTURE: The Genome AND PROTEINS of HIV&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fleichmann_1995-11&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fleichmann_1995_11-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fleischmann R, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J, Dougherty B, Merrick J (1995). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Whole-genome random sequencing and assembly of Haemophilus influenzae Rd&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;269&lt;/strong&gt; (5223): 496&amp;ndash;512. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.7542800&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.7542800&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7542800&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;7542800&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Whole-genome+random+sequencing+and+assembly+of+Haemophilus+influenzae+Rd&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Fleischmann+R%2C+Adams+M%2C+White+O%2C+Clayton+R%2C+Kirkness+E%2C+Kerlavage+A%2C+Bult+C%2C+Tomb+J%2C+Dougherty+B%2C+Merrick+J&amp;amp;rft.au=Fleischmann+R%2C+Adams+M%2C+White+O%2C+Clayton+R%2C+Kirkness+E%2C+Kerlavage+A%2C+Bult+C%2C+Tomb+J%2C+Dougherty+B%2C+Merrick+J&amp;amp;rft.date=1995&amp;amp;rft.volume=269&amp;amp;rft.issue=5223&amp;amp;rft.pages=496%E2%80%93512&amp;amp;rft_id=info:doi/10.1126%2Fscience.7542800&amp;amp;rft_id=info:pmid/7542800&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F269%2F5223%2F496&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-12&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-12&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Nakabachi A, Yamashita A, Toh H, &lt;em&gt;et al.&lt;/em&gt; (October 2006). &amp;quot;The 160-kilobase genome of the bacterial endosymbiont Carsonella&amp;quot;. &lt;em&gt;Science (journal)&lt;/em&gt; &lt;strong&gt;314&lt;/strong&gt; (5797): 267. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.1134196&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.1134196&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17038615&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;17038615&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+160-kilobase+genome+of+the+bacterial+endosymbiont+Carsonella&amp;amp;rft.jtitle=Science+%28journal%29&amp;amp;rft.aulast=Nakabachi+A%2C+Yamashita+A%2C+Toh+H%2C+%27%27et+al.%27%27&amp;amp;rft.au=Nakabachi+A%2C+Yamashita+A%2C+Toh+H%2C+%27%27et+al.%27%27&amp;amp;rft.date=October+2006&amp;amp;rft.volume=314&amp;amp;rft.issue=5797&amp;amp;rft.pages=267&amp;amp;rft_id=info:doi/10.1126%2Fscience.1134196&amp;amp;rft_id=info:pmid/17038615&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-13&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-13&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Frederick R. Blattner, Guy Plunkett III, et al. (1997). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The Complete Genome Sequence of Escherichia coli K-12&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;277&lt;/strong&gt; (5331): 1453&amp;ndash;1462. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.277.5331.1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.277.5331.1453&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9278503&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;9278503&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+Complete+Genome+Sequence+of+Escherichia+coli+K-12&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Frederick+R.+Blattner%2C+Guy+Plunkett+III%2C+et+al.&amp;amp;rft.au=Frederick+R.+Blattner%2C+Guy+Plunkett+III%2C+et+al.&amp;amp;rft.date=1997&amp;amp;rft.volume=277&amp;amp;rft.issue=5331&amp;amp;rft.pages=1453%E2%80%931462&amp;amp;rft_id=info:doi/10.1126%2Fscience.277.5331.1453&amp;amp;rft_id=info:pmid/9278503&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F277%2F5331%2F1453&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Parfrey2008-14&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Parfrey2008_14-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Parfrey, L.W.; Lahr, D.J.G.; Katz, L.A. (2008). &amp;quot;The Dynamic Nature of Eukaryotic Genomes&amp;quot;. &lt;em&gt;Molecular Biology and Evolution&lt;/em&gt; &lt;strong&gt;25&lt;/strong&gt; (4): 787. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1093%2Fmolbev%2Fmsn032&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1093/molbev/msn032&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18258610&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18258610&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+Dynamic+Nature+of+Eukaryotic+Genomes&amp;amp;rft.jtitle=Molecular+Biology+and+Evolution&amp;amp;rft.aulast=Parfrey%2C+L.W.&amp;amp;rft.au=Parfrey%2C+L.W.&amp;amp;rft.date=2008&amp;amp;rft.volume=25&amp;amp;rft.issue=4&amp;amp;rft.pages=787&amp;amp;rft_id=info:doi/10.1093%2Fmolbev%2Fmsn032&amp;amp;rft_id=info:pmid/18258610&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Greilhuber-15&quot;&gt;^ &lt;a href=&quot;#cite_ref-Greilhuber_15-0&quot;&gt;&lt;sup&gt;&lt;em&gt;&lt;strong&gt;&lt;font color=&quot;#0645ad&quot; size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/strong&gt;&lt;/em&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-Greilhuber_15-1&quot;&gt;&lt;sup&gt;&lt;em&gt;&lt;strong&gt;&lt;font color=&quot;#0645ad&quot; size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/strong&gt;&lt;/em&gt;&lt;/sup&gt;&lt;/a&gt; &lt;span class=&quot;citation Journal&quot;&gt;Greilhuber, J., Borsch, T., M&amp;uuml;ller, K., Worberg, A., Porembski, S., and Barthlott, W. (2006). &amp;quot;Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size&amp;quot;. &lt;em&gt;Plant Biology&lt;/em&gt; &lt;strong&gt;8&lt;/strong&gt; (6): 770&amp;ndash;777. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1055%2Fs-2006-924101&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1055/s-2006-924101&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17203433&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;17203433&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Smallest+angiosperm+genomes+found+in+Lentibulariaceae%2C+with+chromosomes+of+bacterial+size&amp;amp;rft.jtitle=Plant+Biology&amp;amp;rft.aulast=Greilhuber%2C+J.%2C+Borsch%2C+T.%2C+M%C3%BCller%2C+K.%2C+Worberg%2C+A.%2C+Porembski%2C+S.%2C+and+Barthlott%2C+W.&amp;amp;rft.au=Greilhuber%2C+J.%2C+Borsch%2C+T.%2C+M%C3%BCller%2C+K.%2C+Worberg%2C+A.%2C+Porembski%2C+S.%2C+and+Barthlott%2C+W.&amp;amp;rft.date=2006&amp;amp;rft.volume=8&amp;amp;rft.issue=6&amp;amp;rft.pages=770%E2%80%93777&amp;amp;rft_id=info:doi/10.1055%2Fs-2006-924101&amp;amp;rft_id=info:pmid/17203433&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-16&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-16&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; Daniel Lang, Andreas D. Zimmer, Stefan A. Rensing, &lt;a title=&quot;Ralf Reski&quot; href=&quot;/wiki/Ralf_Reski&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Ralf Reski&lt;/font&gt;&lt;/a&gt;(2008): Exploring plant &lt;a title=&quot;Biodiversity&quot; href=&quot;/wiki/Biodiversity&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;biodiversity&lt;/font&gt;&lt;/a&gt;: the Physcomitrella genome and beyond. Trends in Plant Science 13, 542-549. &lt;a class=&quot;external autonumber&quot; rel=&quot;nofollow&quot; href=&quot;http://www.cell.com/trends/plant-science/abstract/S1360-1385(08)00204-5&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;[1]&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-17&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-17&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.yeastgenome.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.yeastgenome.org/&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-18&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-18&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;The &lt;em&gt;C. elegans&lt;/em&gt; Sequencing Consortium (1998). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome sequence of the nematode &lt;em&gt;C. elegans&lt;/em&gt;: a platform for investigating biology&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;&lt;a title=&quot;Science (journal)&quot; href=&quot;/wiki/Science_(journal)&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Science&lt;/font&gt;&lt;/a&gt;&lt;/em&gt; &lt;strong&gt;282&lt;/strong&gt; (5396): 2012&amp;ndash;2018. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.282.5396.2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.282.5396.2012&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9851916&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;9851916&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+sequence+of+the+nematode+%27%27C.+elegans%27%27%3A+a+platform+for+investigating+biology&amp;amp;rft.jtitle=%5B%5BScience+%28journal%29%7CScience%5D%5D&amp;amp;rft.aulast=The+%27%27C.+elegans%27%27+Sequencing+Consortium&amp;amp;rft.au=The+%27%27C.+elegans%27%27+Sequencing+Consortium&amp;amp;rft.date=1998&amp;amp;rft.volume=282&amp;amp;rft.issue=5396&amp;amp;rft.pages=2012%E2%80%932018&amp;amp;rft_id=info:doi/10.1126%2Fscience.282.5396.2012&amp;amp;rft_id=info:pmid/9851916&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F282%2F5396%2F2012&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-19&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-19&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/statistics.php?stats=entire#stats_top&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Gregory, T.R. (2005). Animal Genome Size Database. http://www.genomesize.com.&amp;quot;&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/statistics.php?stats=entire#stats_top&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.genomesize.com/statistics.php?stats=entire#stats_top&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Gregory%2C+T.R.+%282005%29.+Animal+Genome+Size+Database.+http%3A%2F%2Fwww.genomesize.com.&amp;amp;rft.atitle=&amp;amp;rft_id=http%3A%2F%2Fwww.genomesize.com%2Fstatistics.php%3Fstats%3Dentire%23stats_top&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Adams_2000-20&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Adams_2000_20-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Adams MD, Celniker SE, Holt RA, &lt;em&gt;et al.&lt;/em&gt; (2000). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The genome sequence of &lt;em&gt;Drosophila melanogaster&lt;/em&gt;&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;287&lt;/strong&gt; (5461): 2185&amp;ndash;95. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.287.5461.2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.287.5461.2185&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10731132&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10731132&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved 2007-05-25&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+genome+sequence+of+%27%27Drosophila+melanogaster%27%27&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Adams+MD%2C+Celniker+SE%2C+Holt+RA%2C+%27%27et+al.%27%27&amp;amp;rft.au=Adams+MD%2C+Celniker+SE%2C+Holt+RA%2C+%27%27et+al.%27%27&amp;amp;rft.date=2000&amp;amp;rft.volume=287&amp;amp;rft.issue=5461&amp;amp;rft.pages=2185%E2%80%9395&amp;amp;rft_id=info:doi/10.1126%2Fscience.287.5461.2185&amp;amp;rft_id=info:pmid/10731132&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F287%2F5461%2F2185&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-21&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-21&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1324956&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Essential genes of a minimal bacterium.&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Proc Natl Acad Sci USA&lt;/em&gt; &lt;strong&gt;103&lt;/strong&gt; (2): 425&amp;ndash;30. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1073%2Fpnas.0510013103&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1073/pnas.0510013103&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16407165&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;16407165&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Essential+genes+of+a+minimal+bacterium.&amp;amp;rft.jtitle=Proc+Natl+Acad+Sci+USA&amp;amp;rft.aulast=Glass+JI%2C+Assad-Garcia+N%2C+Alperovich+N%2C+Yooseph+S%2C+Lewis+MR%2C+Maruf+M%2C+Hutchison+CA+3rd%2C+Smith+HO%2C+Venter+JC&amp;amp;rft.au=Glass+JI%2C+Assad-Garcia+N%2C+Alperovich+N%2C+Yooseph+S%2C+Lewis+MR%2C+Maruf+M%2C+Hutchison+CA+3rd%2C+Smith+HO%2C+Venter+JC&amp;amp;rft.date=2006&amp;amp;rft.volume=103&amp;amp;rft.issue=2&amp;amp;rft.pages=425%E2%80%9330&amp;amp;rft_id=info:doi/10.1073%2Fpnas.0510013103&amp;amp;rft_id=info:pmid/16407165&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-22&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-22&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Forster AC, Church GM (2006). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1681520&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Towards synthesis of a minimal cell&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Mol Syst Biol.&lt;/em&gt; &lt;strong&gt;2:45&lt;/strong&gt;: 45. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2Fmsb4100090&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/msb4100090&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16924266&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;16924266&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Towards+synthesis+of+a+minimal+cell&amp;amp;rft.jtitle=Mol+Syst+Biol.&amp;amp;rft.aulast=Forster+AC%2C+Church+GM&amp;amp;rft.au=Forster+AC%2C+Church+GM&amp;amp;rft.date=2006&amp;amp;rft.volume=2%3A45&amp;amp;rft.pages=45&amp;amp;rft_id=info:doi/10.1038%2Fmsb4100090&amp;amp;rft_id=info:pmid/16924266&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Benfey, P.; Protopapas, A.D. (2004). &lt;em&gt;Essentials of Genomics&lt;/em&gt;. Prentice Hall.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Essentials+of+Genomics&amp;amp;rft.aulast=Benfey&amp;amp;rft.aufirst=P.&amp;amp;rft.au=Benfey%2C%26%2332%3BP.&amp;amp;rft.date=2004&amp;amp;rft.pub=Prentice+Hall&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Brown, Terence A. (2002). &lt;em&gt;Genomes 2&lt;/em&gt;. Oxford: Bios Scientific Publishers. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/978-1859960295&quot; href=&quot;/wiki/Special:BookSources/978-1859960295&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;978-1859960295&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Genomes+2&amp;amp;rft.aulast=Brown&amp;amp;rft.aufirst=Terence+A.&amp;amp;rft.au=Brown%2C%26%2332%3BTerence+A.&amp;amp;rft.date=2002&amp;amp;rft.place=Oxford&amp;amp;rft.pub=Bios+Scientific+Publishers&amp;amp;rft.isbn=978-1859960295&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Gibson, Greg; Muse, Spencer V. (2004). &lt;em&gt;A Primer of Genome Science&lt;/em&gt; (Second ed.). Sunderland, Mass: Sinauer Assoc. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-87893-234-8&quot; href=&quot;/wiki/Special:BookSources/0-87893-234-8&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-87893-234-8&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=A+Primer+of+Genome+Science&amp;amp;rft.aulast=Gibson&amp;amp;rft.aufirst=Greg&amp;amp;rft.au=Gibson%2C%26%2332%3BGreg&amp;amp;rft.date=2004&amp;amp;rft.edition=Second&amp;amp;rft.place=Sunderland%2C+Mass&amp;amp;rft.pub=Sinauer+Assoc&amp;amp;rft.isbn=0-87893-234-8&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Gregory, T. Ryan (ed) (2005). &lt;em&gt;&lt;a title=&quot;The Evolution of the Genome&quot; href=&quot;/wiki/The_Evolution_of_the_Genome&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;The Evolution of the Genome&lt;/font&gt;&lt;/a&gt;&lt;/em&gt;. Elsevier. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-12-301463-8&quot; href=&quot;/wiki/Special:BookSources/0-12-301463-8&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-12-301463-8&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Gregory&amp;amp;rft.aufirst=T.+Ryan+%28ed%29&amp;amp;rft.au=Gregory%2C%26%2332%3BT.+Ryan+%28ed%29&amp;amp;rft.date=2005&amp;amp;rft.pub=Elsevier&amp;amp;rft.isbn=0-12-301463-8&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Reece, Richard J. (2004). &lt;em&gt;Analysis of Genes and Genomes&lt;/em&gt;. Chichester: John Wiley &amp;amp; Sons. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-470-84379-9&quot; href=&quot;/wiki/Special:BookSources/0-470-84379-9&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-470-84379-9&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Analysis+of+Genes+and+Genomes&amp;amp;rft.aulast=Reece&amp;amp;rft.aufirst=Richard+J.&amp;amp;rft.au=Reece%2C%26%2332%3BRichard+J.&amp;amp;rft.date=2004&amp;amp;rft.place=Chichester&amp;amp;rft.pub=John+Wiley+%26+Sons&amp;amp;rft.isbn=0-470-84379-9&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Saccone, Cecilia; Pesole, Graziano (2003). &lt;em&gt;Handbook of Comparative Genomics&lt;/em&gt;. Chichester: John Wiley &amp;amp; Sons. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-471-39128-X&quot; href=&quot;/wiki/Special:BookSources/0-471-39128-X&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-471-39128-X&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Handbook+of+Comparative+Genomics&amp;amp;rft.aulast=Saccone&amp;amp;rft.aufirst=Cecilia&amp;amp;rft.au=Saccone%2C%26%2332%3BCecilia&amp;amp;rft.date=2003&amp;amp;rft.place=Chichester&amp;amp;rft.pub=John+Wiley+%26+Sons&amp;amp;rft.isbn=0-471-39128-X&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Werner, E. (2003). &amp;quot;In silico multicellular systems biology and minimal genomes&amp;quot;. &lt;em&gt;Drug Discov Today&lt;/em&gt; &lt;strong&gt;8&lt;/strong&gt; (24): 1121&amp;ndash;1127. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1016%2FS1359-6446%2803%2902918-0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1016/S1359-6446(03)02918-0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14678738&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;14678738&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=In+silico+multicellular+systems+biology+and+minimal+genomes&amp;amp;rft.jtitle=Drug+Discov+Today&amp;amp;rft.aulast=Werner&amp;amp;rft.aufirst=E.&amp;amp;rft.au=Werner%2C%26%2332%3BE.&amp;amp;rft.date=2003&amp;amp;rft.volume=8&amp;amp;rft.issue=24&amp;amp;rft.pages=1121%E2%80%931127&amp;amp;rft_id=info:doi/10.1016%2FS1359-6446%2803%2902918-0&amp;amp;rft_id=info:pmid/14678738&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;font color=&quot;#3366bb&quot;&gt;[http://genomics.org Genomics.org]&lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;[http://omics.org Omics.org]&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://learn.genetics.utah.edu/content/begin/dna/builddna/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Build a DNA Molecule&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/articles/02_01/Sizing_genomes.shtml&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Some comparative genome sizes&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.dnai.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;DNA Interactive: The History of DNA Science&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.dnaftb.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;DNA From The Beginning&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genome.gov/10001772&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;All About The Human Genome Project from Genome.gov&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Animal genome size database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.rbgkew.org.uk/cval/homepage.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Plant genome size database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesonline.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GOLD:Genomes OnLine Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;The Genome News Network&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;NCBI Entrez Genome Project database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;NCBI Genome Primer&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://news.bbc.co.uk/1/hi/sci/tech/4994088.stm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;BBC News - Final genome 'chapter' published&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;https://www.crops.org/genome/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;The Plant Genome&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://img.jgi.doe.gov/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;IMG&lt;/font&gt;&lt;/a&gt; The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://camera.calit2.net/index.php/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;CAMERA&lt;/font&gt;&lt;/a&gt; Cyberinfrastructure for Metagenomics, data repository and bioinformatics tools for metagenomic research&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genecards.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GeneCards&lt;/font&gt;&lt;/a&gt; an integrated database of human genes.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://genome.igib.res.in/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Genome@IGIB&lt;/font&gt;&lt;/a&gt; Resources and News on the Zebrafish Genome Project @ IGIB.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.geknome.com&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GeKnome Technologies Next-Gen Sequencing Data Analysis&lt;/font&gt;&lt;/a&gt; Next-Gen Sequencing Data Analysis for &lt;a title=&quot;Illumina&quot; href=&quot;/wiki/Illumina&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Illumina&lt;/font&gt;&lt;/a&gt; and &lt;a title=&quot;454&quot; href=&quot;/wiki/454&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;454&lt;/font&gt;&lt;/a&gt; Service from GeKnome Technologies.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://ascb.org/ibioseminars/brenner/brenner1.cfm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;What Genomes Can Tell Us About the Past&lt;/font&gt;&lt;/a&gt; - lecture by &lt;a title=&quot;Sydney Brenner&quot; href=&quot;/wiki/Sydney_Brenner&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Sydney Brenner&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.imame.org/form/genome--mid80-frz.htm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Genome metaphor, reflecting from formal-net hierarchies, and software binaries&lt;/font&gt;&lt;/a&gt;.&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=Genome&diff=3474 Genome 2011-02-03T08:07:28Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The&amp;nbsp;&lt;strong&gt;genome&lt;/strong&gt; is the entire&amp;nbsp;set of sequences in an organism that&amp;nbsp;encodes information for survival and the&amp;nbsp;continuation of the species it belongs to. &lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The main function of genome is information storaging and processing to form an entity that utilizes energy to keep processing signals to interact with other genomes in the whole eco-system.&lt;/font&gt;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;font size=&quot;3&quot;&gt;The genome is universal in the universe and aliens living&amp;nbsp;on other planets also have genomes. The chemical construction may be slightly different but the information deposition and processing function is the same.&lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The information is usually stored&amp;nbsp;in DNA or RNA in the organisms found on Earth.&lt;br /&gt;<br /> &lt;br /&gt;<br /> The genome is often classified&amp;nbsp;into the protein coding genes and the non-coding sequences of the DNA historically.&lt;sup id=&quot;cite_ref-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;span&gt;[&lt;/span&gt;1&lt;/font&gt;&lt;span&gt;&lt;font size=&quot;3&quot;&gt;]&lt;/font&gt;&lt;br /&gt;<br /> &lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The essence of genome&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;The essence of genomes is that it is the foundation of spontaneous information processing network that can utilizes energy in time axis. The genome is a kind of linearly expressed language system.&lt;/font&gt;&lt;/font&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;/font&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Origin_of_Term&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Origin of Term&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The term was adapted in 1920 by [[Hans Winkler]], Professor of Botany at the University of Hamburg, Germany. In Greek, the word &lt;em&gt;genome&lt;/em&gt; (&amp;gamma;ί&amp;nu;&amp;omicron;&amp;mu;&amp;alpha;&amp;iota;) means I become, I am born, to come into being. &lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The Oxford English Dictionary suggests the name to be a blend of the words &lt;em&gt;&lt;strong&gt;gen&lt;/strong&gt;e&lt;/em&gt; and &lt;em&gt;chromos&lt;strong&gt;ome&lt;/strong&gt;&lt;/em&gt;. A few related &lt;em&gt;-ome&lt;/em&gt; words already existed, such as &lt;em&gt;biome&lt;/em&gt; and &lt;em&gt;rhizome&lt;/em&gt;, forming a vocabulary into which &lt;em&gt;genome&lt;/em&gt; fits systematically.&lt;sup id=&quot;cite_ref-1&quot; class=&quot;reference&quot;&gt;[2]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Overview&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Overview&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Some organisms have multiple copies of chromosomes, diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half of the number of chromosome of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the &lt;em&gt;genome&lt;/em&gt;. The term genome can be applied specifically to mean that stored on a complete set of &lt;em&gt;nuclear DNA&lt;/em&gt; (i.e., the &amp;quot;nuclear genome&amp;quot;) but can also be applied to that stored within organelles that contain their own DNA, as with the &amp;quot;mitochondrial genome&amp;quot; or the &amp;quot;chloroplast genome&amp;quot;. Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements&lt;sup id=&quot;cite_ref-Brock_2-0&quot; class=&quot;reference&quot;&gt;[3]&lt;/sup&gt;. When people say that the genome of a sexually reproducing species has been &amp;quot;sequenced&amp;quot;, typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as &amp;quot;a genome sequence&amp;quot; may be a composite read from the chromosomes of various individuals. In general use, the phrase &amp;quot;genetic makeup&amp;quot; is sometimes used conversationally to mean the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;An analogy to the human genome stored on DNA is that of instructions stored in a library:&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The library would contain 46 books (chromosomes)&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The books range in size from 400 to 3340 pages (genes)&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;which is 48 to 250 million letters (A,C,G,T) per book.&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Hence the library contains over six billion letters total;&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The library fits into a cell nucleus the size of a pinpoint;&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;A copy of the library (all 46 books) is contained in almost every cell of our body.&lt;/font&gt; &lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Types&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Types&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, &amp;quot;genome&amp;quot; is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, &amp;quot;genome&amp;quot; describes all of the genes and information on non-coding DNA that have the potential to be present.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;In eukaryotes such as plants, protozoa and animals, however, &amp;quot;genome&amp;quot; carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the &amp;quot;mitochondrial genome&amp;quot;. The DNA found within the chloroplast may be referred to as the &amp;quot;plastome&amp;quot;.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Genomes_and_genetic_variation&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genomes and genetic variation&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Note that a genome does not capture the genetic diversity or the genetic polymorphism of a species. For example, the human genome sequence in principle could be determined from just half the information on the DNA of one cell from one individual. To learn what variations in genetic information underlie particular traits or diseases requires comparisons across individuals. This point explains the common usage of &amp;quot;genome&amp;quot; (which parallels a common usage of &amp;quot;gene&amp;quot;) to refer not to the information in any particular DNA sequence, but to a whole family of sequences that share a biological context.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Although this concept may seem counter intuitive, it is the same concept that says there is no particular shape that is the shape of a cheetah. Cheetahs vary, and so do the sequences of their genomes. Yet both the individual animals and their sequences share commonalities, so one can learn something about cheetahs and &amp;quot;cheetah-ness&amp;quot; from a single example of either.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;&lt;span id=&quot;Sequencing_and_mapping&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Sequencing and mapping&lt;/font&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;div class=&quot;rellink boilerplate seealso&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;For more details on this topic, see Genome project.&lt;/font&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant &lt;em&gt;Arabidopsis thaliana&lt;/em&gt;, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage &amp;Phi;-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.&lt;sup id=&quot;cite_ref-3&quot; class=&quot;reference&quot;&gt;[4]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 &lt;em&gt;New York Times&lt;/em&gt; announcement that the full genome of DNA pioneer James D. Watson was deciphered.&lt;sup id=&quot;cite_ref-4&quot; class=&quot;reference&quot;&gt;[5]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.&lt;sup id=&quot;cite_ref-5&quot; class=&quot;reference&quot;&gt;[6]&lt;/sup&gt;&lt;sup id=&quot;cite_ref-6&quot; class=&quot;reference&quot;&gt;[7]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Comparison_of_different_genome_sizes&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Comparison of different genome sizes&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;rellink relarticle mainarticle&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Main article: Genome size&lt;/font&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;<br /> &lt;table id=&quot;sortable_table_id_0&quot; class=&quot;wikitable sortable&quot;&gt;<br /> &lt;tbody&gt;<br /> &lt;tr&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Organism type&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Organism&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Genome size (base pairs)&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;mass - in pg&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;th&gt;&lt;font color=&quot;#000000&quot;&gt;Note&lt;span class=&quot;sortarrow&quot;&gt;&lt;img alt=&quot;&amp;darr;&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif&quot; /&gt;&lt;/span&gt;&lt;/font&gt;&lt;/th&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacteriophage MS2&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3,569&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;0.000002&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First sequenced RNA-genome&lt;sup id=&quot;cite_ref-Fiers1976_7-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;8&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;SV40&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;5,224&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-Fiers1978_8-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;9&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Phage &amp;Phi;-X174&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;5,386&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First sequenced DNA-genome&lt;sup id=&quot;cite_ref-Sanger1977_9-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;10&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;HIV&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;9749&lt;sup id=&quot;cite_ref-10&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;11&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Phage &amp;lambda;&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;48,502&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Virus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Mimivirus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;1,181,404&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known viral genome&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Haemophilus influenzae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;1,830,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First genome of living organism, July 1995&lt;sup id=&quot;cite_ref-Fleichmann_1995_11-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;12&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Carsonella ruddii&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;159,662&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest non-viral genome.&lt;sup id=&quot;cite_ref-12&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;13&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Buchnera aphidicola&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;600,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Wigglesworthia glossinidia&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;700,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Escherichia coli&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;4,600,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-13&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;14&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Bacterium&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Solibacter usitatus&lt;/em&gt; (strain Ellin 6076)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;9,970,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known Bacterial genome&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Amoeboid&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Polychaos dubium&lt;/em&gt; (&lt;em&gt;&amp;quot;Amoeba&amp;quot; dubia&lt;/em&gt;)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;670,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;737&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest known genome.&lt;sup id=&quot;cite_ref-Parfrey2008_14-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;15&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Arabidopsis thaliana&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;157,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First plant genome sequenced, December 2000.&lt;sup id=&quot;cite_ref-Greilhuber_15-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;16&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Genlisea margaretae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;63,400,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest recorded flowering plant genome, 2006.&lt;sup id=&quot;cite_ref-Greilhuber_15-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;16&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Fritillaria assyrica&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Plant&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Populus trichocarpa&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;480,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First tree genome, September 2006&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Moss&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Physcomitrella patens&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;480,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First genome of a bryophyte, January 2008 &lt;sup id=&quot;cite_ref-16&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;17&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Yeast&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Saccharomyces cerevisiae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;12,100,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-17&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;18&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fungus&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Aspergillus nidulans&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;30,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Nematode&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Caenorhabditis elegans&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;100,300,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;First multicellular animal genome, December 1998&lt;sup id=&quot;cite_ref-18&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;19&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Nematode&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Pratylenchus coffeae&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;20,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest animal genome known&lt;sup id=&quot;cite_ref-19&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;span&gt;[&lt;/span&gt;20&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Drosophila melanogaster&lt;/em&gt; (fruit fly)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;sup id=&quot;cite_ref-Adams_2000_20-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;span&gt;[&lt;/span&gt;21&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Bombyx mori&lt;/em&gt; (silk moth)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;530,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Insect&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Apis mellifera&lt;/em&gt; (honey bee)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;236,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fish&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Tetraodon nigroviridis&lt;/em&gt; (type of puffer fish)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;385,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Smallest vertebrate genome known&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Mammal&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;em&gt;&lt;font color=&quot;#000000&quot;&gt;Homo sapiens&lt;/font&gt;&lt;/em&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3,200,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;3&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&amp;nbsp;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;tr&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Fish&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Protopterus aethiopicus&lt;/em&gt; (marbled lungfish)&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;130,000,000,000&lt;/font&gt;&lt;/td&gt;<br /> &lt;td align=&quot;right&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;143&lt;/font&gt;&lt;/td&gt;<br /> &lt;td&gt;&lt;font color=&quot;#000000&quot;&gt;Largest vertebrate genome known&lt;/font&gt;&lt;/td&gt;<br /> &lt;/tr&gt;<br /> &lt;/tbody&gt;<br /> &lt;/table&gt;<br /> &lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;&lt;em&gt;Note:&lt;/em&gt; The DNA from a single (diploid) human cell if the 46 chromosomes were connected end-to-end and straightened, would have a length of ~2 m and a width of ~2.4 nanometers.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Since genomes and their organisms are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multicellular organisms (see Developmental biology). The work is both &lt;em&gt;in vivo&lt;/em&gt; and &lt;em&gt;in silico&lt;/em&gt;.&lt;sup id=&quot;cite_ref-21&quot; class=&quot;reference&quot;&gt;[22]&lt;/sup&gt;&lt;sup id=&quot;cite_ref-22&quot; class=&quot;reference&quot;&gt;[23]&lt;/sup&gt;&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Genome_evolution&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genome evolution&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as &lt;em&gt;chromosome number&lt;/em&gt; (karyotype), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Duplications play a major role in shaping the genome. Duplications may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplications of entire chromosomes or even entire genomes. Such duplications are probably fundamental to the creation of genetic novelty.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;Horizontal gene transfer is invoked to explain how there is often extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes.&lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;&lt;font color=&quot;#000000&quot;&gt;References&lt;/font&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div style=&quot;column-count: 2; -moz-column-count: 2; -webkit-column-count: 2&quot; class=&quot;references-small references-column-count references-column-count-2&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;cite_note-0&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; Ridley, M. (2006). &lt;em&gt;Genome&lt;/em&gt;. New York, NY: Harper Perennial. &lt;a class=&quot;internal mw-magiclink-isbn&quot; href=&quot;/wiki/Special:BookSources/0060194979&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN 0-06-019497-9&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-1&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Joshua Lederberg and Alexa T. McCray (2001). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;'Ome Sweet 'Omics -- A Genealogical Treasury of Words&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;The Scientist&lt;/em&gt; &lt;strong&gt;15&lt;/strong&gt; (7)&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=%27Ome+Sweet+%27Omics+--+A+Genealogical+Treasury+of+Words&amp;amp;rft.jtitle=The+Scientist&amp;amp;rft.aulast=Joshua+Lederberg+and+Alexa+T.+McCray&amp;amp;rft.au=Joshua+Lederberg+and+Alexa+T.+McCray&amp;amp;rft.date=2001&amp;amp;rft.volume=15&amp;amp;rft.issue=7&amp;amp;rft_id=http%3A%2F%2Flhncbc.nlm.nih.gov%2Flhc%2Fdocs%2Fpublished%2F2001%2Fpub2001047.pdf&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Brock-2&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Brock_2-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation book&quot;&gt;Madigan M, Martinko J (editors) (2006). &lt;em&gt;Brock Biology of Microorganisms&lt;/em&gt; (11th ed.). Prentice Hall. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-13-144329-1&quot; href=&quot;/wiki/Special:BookSources/0-13-144329-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-13-144329-1&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Brock+Biology+of+Microorganisms&amp;amp;rft.aulast=Madigan+M%2C+Martinko+J+%28editors%29&amp;amp;rft.au=Madigan+M%2C+Martinko+J+%28editors%29&amp;amp;rft.date=2006&amp;amp;rft.edition=11th&amp;amp;rft.pub=Prentice+Hall&amp;amp;rft.isbn=0-13-144329-1&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-3&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-3&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&amp;amp;itool=toolbar&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&amp;amp;itool=toolbar&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-4&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-4&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation news&quot;&gt;Wade, Nicholas (2007-05-31). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome of DNA Pioneer Is Deciphered&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;The New York Times&lt;/em&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&amp;amp;ex=1180843200&amp;amp;en=19e1d55639350b73&amp;amp;ei=5087%0A&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved 2010-04-02&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+of+DNA+Pioneer+Is+Deciphered&amp;amp;rft.jtitle=The+New+York+Times&amp;amp;rft.aulast=Wade&amp;amp;rft.aufirst=Nicholas&amp;amp;rft.au=Wade%2C%26%2332%3BNicholas&amp;amp;rft.date=2007-05-31&amp;amp;rft_id=http%3A%2F%2Fwww.nytimes.com%2F2007%2F05%2F31%2Fscience%2F31cnd-gene.html%3Fem%26ex%3D1180843200%26en%3D19e1d55639350b73%26ei%3D5087%250A&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-5&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-5&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-6&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-6&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/About/primer/mapping.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.ncbi.nlm.nih.gov/About/primer/mapping.html&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fiers1976-7&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fiers1976_7-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fiers W, &lt;em&gt;et al.&lt;/em&gt; (1976). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;260&lt;/strong&gt; (5551): 500&amp;ndash;507. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F260500a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/260500a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/1264203&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;1264203&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Complete+nucleotide-sequence+of+bacteriophage+MS2-RNA+-+primary+and+secondary+structure+of+replicase+gene&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Fiers+W%2C+%27%27et+al.%27%27&amp;amp;rft.au=Fiers+W%2C+%27%27et+al.%27%27&amp;amp;rft.date=1976&amp;amp;rft.volume=260&amp;amp;rft.issue=5551&amp;amp;rft.pages=500%E2%80%93507&amp;amp;rft_id=info:doi/10.1038%2F260500a0&amp;amp;rft_id=info:pmid/1264203&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv260%2Fn5551%2Fabs%2F260500a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fiers1978-8&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fiers1978_8-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fiers W, Contreras R, Haegemann G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M (1978). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Complete nucleotide sequence of SV40 DNA&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;273&lt;/strong&gt; (5658): 113&amp;ndash;120. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F273113a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/273113a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/205802&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;205802&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Complete+nucleotide+sequence+of+SV40+DNA&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Fiers+W%2C+Contreras+R%2C+Haegemann+G%2C+Rogiers+R%2C+Van+de+Voorde+A%2C+Van+Heuverswyn+H%2C+Van+Herreweghe+J%2C+Volckaert+G%2C+Ysebaert+M&amp;amp;rft.au=Fiers+W%2C+Contreras+R%2C+Haegemann+G%2C+Rogiers+R%2C+Van+de+Voorde+A%2C+Van+Heuverswyn+H%2C+Van+Herreweghe+J%2C+Volckaert+G%2C+Ysebaert+M&amp;amp;rft.date=1978&amp;amp;rft.volume=273&amp;amp;rft.issue=5658&amp;amp;rft.pages=113%E2%80%93120&amp;amp;rft_id=info:doi/10.1038%2F273113a0&amp;amp;rft_id=info:pmid/205802&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv273%2Fn5658%2Fabs%2F273113a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Sanger1977-9&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Sanger1977_9-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Nucleotide sequence of bacteriophage phi X174 DNA&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Nature&lt;/em&gt; &lt;strong&gt;265&lt;/strong&gt; (5596): 687&amp;ndash;695. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2F265687a0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/265687a0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/870828&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;870828&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Nucleotide+sequence+of+bacteriophage+phi+X174+DNA&amp;amp;rft.jtitle=Nature&amp;amp;rft.aulast=Sanger+F%2C+Air+GM%2C+Barrell+BG%2C+Brown+NL%2C+Coulson+AR%2C+Fiddes+CA%2C+Hutchison+CA%2C+Slocombe+PM%2C+Smith+M&amp;amp;rft.au=Sanger+F%2C+Air+GM%2C+Barrell+BG%2C+Brown+NL%2C+Coulson+AR%2C+Fiddes+CA%2C+Hutchison+CA%2C+Slocombe+PM%2C+Smith+M&amp;amp;rft.date=1977&amp;amp;rft.volume=265&amp;amp;rft.issue=5596&amp;amp;rft.pages=687%E2%80%93695&amp;amp;rft_id=info:doi/10.1038%2F265687a0&amp;amp;rft_id=info:pmid/870828&amp;amp;rft_id=http%3A%2F%2Fwww.nature.com%2Fnature%2Fjournal%2Fv265%2Fn5596%2Fabs%2F265687a0.html&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-10&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-10&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://pathmicro.med.sc.edu/lecture/hiv9.htm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;VIROLOGY - HUMAN IMMUNODEFICIENCY VIRUS AND AIDS, STRUCTURE: The Genome AND PROTEINS of HIV&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Fleichmann_1995-11&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Fleichmann_1995_11-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Fleischmann R, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J, Dougherty B, Merrick J (1995). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Whole-genome random sequencing and assembly of Haemophilus influenzae Rd&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;269&lt;/strong&gt; (5223): 496&amp;ndash;512. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.7542800&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.7542800&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/7542800&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;7542800&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/269/5223/496&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Whole-genome+random+sequencing+and+assembly+of+Haemophilus+influenzae+Rd&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Fleischmann+R%2C+Adams+M%2C+White+O%2C+Clayton+R%2C+Kirkness+E%2C+Kerlavage+A%2C+Bult+C%2C+Tomb+J%2C+Dougherty+B%2C+Merrick+J&amp;amp;rft.au=Fleischmann+R%2C+Adams+M%2C+White+O%2C+Clayton+R%2C+Kirkness+E%2C+Kerlavage+A%2C+Bult+C%2C+Tomb+J%2C+Dougherty+B%2C+Merrick+J&amp;amp;rft.date=1995&amp;amp;rft.volume=269&amp;amp;rft.issue=5223&amp;amp;rft.pages=496%E2%80%93512&amp;amp;rft_id=info:doi/10.1126%2Fscience.7542800&amp;amp;rft_id=info:pmid/7542800&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F269%2F5223%2F496&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-12&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-12&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Nakabachi A, Yamashita A, Toh H, &lt;em&gt;et al.&lt;/em&gt; (October 2006). &amp;quot;The 160-kilobase genome of the bacterial endosymbiont Carsonella&amp;quot;. &lt;em&gt;Science (journal)&lt;/em&gt; &lt;strong&gt;314&lt;/strong&gt; (5797): 267. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.1134196&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.1134196&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17038615&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;17038615&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+160-kilobase+genome+of+the+bacterial+endosymbiont+Carsonella&amp;amp;rft.jtitle=Science+%28journal%29&amp;amp;rft.aulast=Nakabachi+A%2C+Yamashita+A%2C+Toh+H%2C+%27%27et+al.%27%27&amp;amp;rft.au=Nakabachi+A%2C+Yamashita+A%2C+Toh+H%2C+%27%27et+al.%27%27&amp;amp;rft.date=October+2006&amp;amp;rft.volume=314&amp;amp;rft.issue=5797&amp;amp;rft.pages=267&amp;amp;rft_id=info:doi/10.1126%2Fscience.1134196&amp;amp;rft_id=info:pmid/17038615&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-13&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-13&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Frederick R. Blattner, Guy Plunkett III, et al. (1997). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The Complete Genome Sequence of Escherichia coli K-12&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;277&lt;/strong&gt; (5331): 1453&amp;ndash;1462. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.277.5331.1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.277.5331.1453&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9278503&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;9278503&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/277/5331/1453&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+Complete+Genome+Sequence+of+Escherichia+coli+K-12&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Frederick+R.+Blattner%2C+Guy+Plunkett+III%2C+et+al.&amp;amp;rft.au=Frederick+R.+Blattner%2C+Guy+Plunkett+III%2C+et+al.&amp;amp;rft.date=1997&amp;amp;rft.volume=277&amp;amp;rft.issue=5331&amp;amp;rft.pages=1453%E2%80%931462&amp;amp;rft_id=info:doi/10.1126%2Fscience.277.5331.1453&amp;amp;rft_id=info:pmid/9278503&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F277%2F5331%2F1453&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Parfrey2008-14&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Parfrey2008_14-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Parfrey, L.W.; Lahr, D.J.G.; Katz, L.A. (2008). &amp;quot;The Dynamic Nature of Eukaryotic Genomes&amp;quot;. &lt;em&gt;Molecular Biology and Evolution&lt;/em&gt; &lt;strong&gt;25&lt;/strong&gt; (4): 787. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1093%2Fmolbev%2Fmsn032&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1093/molbev/msn032&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18258610&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18258610&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+Dynamic+Nature+of+Eukaryotic+Genomes&amp;amp;rft.jtitle=Molecular+Biology+and+Evolution&amp;amp;rft.aulast=Parfrey%2C+L.W.&amp;amp;rft.au=Parfrey%2C+L.W.&amp;amp;rft.date=2008&amp;amp;rft.volume=25&amp;amp;rft.issue=4&amp;amp;rft.pages=787&amp;amp;rft_id=info:doi/10.1093%2Fmolbev%2Fmsn032&amp;amp;rft_id=info:pmid/18258610&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Greilhuber-15&quot;&gt;^ &lt;a href=&quot;#cite_ref-Greilhuber_15-0&quot;&gt;&lt;sup&gt;&lt;em&gt;&lt;strong&gt;&lt;font color=&quot;#0645ad&quot; size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/strong&gt;&lt;/em&gt;&lt;/sup&gt;&lt;/a&gt; &lt;a href=&quot;#cite_ref-Greilhuber_15-1&quot;&gt;&lt;sup&gt;&lt;em&gt;&lt;strong&gt;&lt;font color=&quot;#0645ad&quot; size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/strong&gt;&lt;/em&gt;&lt;/sup&gt;&lt;/a&gt; &lt;span class=&quot;citation Journal&quot;&gt;Greilhuber, J., Borsch, T., M&amp;uuml;ller, K., Worberg, A., Porembski, S., and Barthlott, W. (2006). &amp;quot;Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size&amp;quot;. &lt;em&gt;Plant Biology&lt;/em&gt; &lt;strong&gt;8&lt;/strong&gt; (6): 770&amp;ndash;777. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1055%2Fs-2006-924101&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1055/s-2006-924101&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/17203433&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;17203433&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Smallest+angiosperm+genomes+found+in+Lentibulariaceae%2C+with+chromosomes+of+bacterial+size&amp;amp;rft.jtitle=Plant+Biology&amp;amp;rft.aulast=Greilhuber%2C+J.%2C+Borsch%2C+T.%2C+M%C3%BCller%2C+K.%2C+Worberg%2C+A.%2C+Porembski%2C+S.%2C+and+Barthlott%2C+W.&amp;amp;rft.au=Greilhuber%2C+J.%2C+Borsch%2C+T.%2C+M%C3%BCller%2C+K.%2C+Worberg%2C+A.%2C+Porembski%2C+S.%2C+and+Barthlott%2C+W.&amp;amp;rft.date=2006&amp;amp;rft.volume=8&amp;amp;rft.issue=6&amp;amp;rft.pages=770%E2%80%93777&amp;amp;rft_id=info:doi/10.1055%2Fs-2006-924101&amp;amp;rft_id=info:pmid/17203433&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-16&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-16&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; Daniel Lang, Andreas D. Zimmer, Stefan A. Rensing, &lt;a title=&quot;Ralf Reski&quot; href=&quot;/wiki/Ralf_Reski&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Ralf Reski&lt;/font&gt;&lt;/a&gt;(2008): Exploring plant &lt;a title=&quot;Biodiversity&quot; href=&quot;/wiki/Biodiversity&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;biodiversity&lt;/font&gt;&lt;/a&gt;: the Physcomitrella genome and beyond. Trends in Plant Science 13, 542-549. &lt;a class=&quot;external autonumber&quot; rel=&quot;nofollow&quot; href=&quot;http://www.cell.com/trends/plant-science/abstract/S1360-1385(08)00204-5&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;[1]&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-17&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-17&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.yeastgenome.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.yeastgenome.org/&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-18&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-18&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;The &lt;em&gt;C. elegans&lt;/em&gt; Sequencing Consortium (1998). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome sequence of the nematode &lt;em&gt;C. elegans&lt;/em&gt;: a platform for investigating biology&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;&lt;a title=&quot;Science (journal)&quot; href=&quot;/wiki/Science_(journal)&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Science&lt;/font&gt;&lt;/a&gt;&lt;/em&gt; &lt;strong&gt;282&lt;/strong&gt; (5396): 2012&amp;ndash;2018. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.282.5396.2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.282.5396.2012&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/9851916&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;9851916&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/282/5396/2012&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+sequence+of+the+nematode+%27%27C.+elegans%27%27%3A+a+platform+for+investigating+biology&amp;amp;rft.jtitle=%5B%5BScience+%28journal%29%7CScience%5D%5D&amp;amp;rft.aulast=The+%27%27C.+elegans%27%27+Sequencing+Consortium&amp;amp;rft.au=The+%27%27C.+elegans%27%27+Sequencing+Consortium&amp;amp;rft.date=1998&amp;amp;rft.volume=282&amp;amp;rft.issue=5396&amp;amp;rft.pages=2012%E2%80%932018&amp;amp;rft_id=info:doi/10.1126%2Fscience.282.5396.2012&amp;amp;rft_id=info:pmid/9851916&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F282%2F5396%2F2012&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-19&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-19&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/statistics.php?stats=entire#stats_top&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Gregory, T.R. (2005). Animal Genome Size Database. http://www.genomesize.com.&amp;quot;&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/statistics.php?stats=entire#stats_top&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.genomesize.com/statistics.php?stats=entire#stats_top&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Gregory%2C+T.R.+%282005%29.+Animal+Genome+Size+Database.+http%3A%2F%2Fwww.genomesize.com.&amp;amp;rft.atitle=&amp;amp;rft_id=http%3A%2F%2Fwww.genomesize.com%2Fstatistics.php%3Fstats%3Dentire%23stats_top&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Adams_2000-20&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-Adams_2000_20-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Adams MD, Celniker SE, Holt RA, &lt;em&gt;et al.&lt;/em&gt; (2000). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The genome sequence of &lt;em&gt;Drosophila melanogaster&lt;/em&gt;&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Science&lt;/em&gt; &lt;strong&gt;287&lt;/strong&gt; (5461): 2185&amp;ndash;95. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1126%2Fscience.287.5461.2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1126/science.287.5461.2185&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10731132&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10731132&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www.sciencemag.org/cgi/content/abstract/287/5461/2185&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved 2007-05-25&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+genome+sequence+of+%27%27Drosophila+melanogaster%27%27&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Adams+MD%2C+Celniker+SE%2C+Holt+RA%2C+%27%27et+al.%27%27&amp;amp;rft.au=Adams+MD%2C+Celniker+SE%2C+Holt+RA%2C+%27%27et+al.%27%27&amp;amp;rft.date=2000&amp;amp;rft.volume=287&amp;amp;rft.issue=5461&amp;amp;rft.pages=2185%E2%80%9395&amp;amp;rft_id=info:doi/10.1126%2Fscience.287.5461.2185&amp;amp;rft_id=info:pmid/10731132&amp;amp;rft_id=http%3A%2F%2Fwww.sciencemag.org%2Fcgi%2Fcontent%2Fabstract%2F287%2F5461%2F2185&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-21&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-21&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1324956&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Essential genes of a minimal bacterium.&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Proc Natl Acad Sci USA&lt;/em&gt; &lt;strong&gt;103&lt;/strong&gt; (2): 425&amp;ndash;30. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1073%2Fpnas.0510013103&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1073/pnas.0510013103&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16407165&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;16407165&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Essential+genes+of+a+minimal+bacterium.&amp;amp;rft.jtitle=Proc+Natl+Acad+Sci+USA&amp;amp;rft.aulast=Glass+JI%2C+Assad-Garcia+N%2C+Alperovich+N%2C+Yooseph+S%2C+Lewis+MR%2C+Maruf+M%2C+Hutchison+CA+3rd%2C+Smith+HO%2C+Venter+JC&amp;amp;rft.au=Glass+JI%2C+Assad-Garcia+N%2C+Alperovich+N%2C+Yooseph+S%2C+Lewis+MR%2C+Maruf+M%2C+Hutchison+CA+3rd%2C+Smith+HO%2C+Venter+JC&amp;amp;rft.date=2006&amp;amp;rft.volume=103&amp;amp;rft.issue=2&amp;amp;rft.pages=425%E2%80%9330&amp;amp;rft_id=info:doi/10.1073%2Fpnas.0510013103&amp;amp;rft_id=info:pmid/16407165&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-22&quot;&gt;&lt;strong&gt;&lt;a href=&quot;#cite_ref-22&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/strong&gt; &lt;span class=&quot;citation Journal&quot;&gt;Forster AC, Church GM (2006). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=1681520&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Towards synthesis of a minimal cell&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;em&gt;Mol Syst Biol.&lt;/em&gt; &lt;strong&gt;2:45&lt;/strong&gt;: 45. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2Fmsb4100090&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/msb4100090&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/16924266&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;16924266&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Towards+synthesis+of+a+minimal+cell&amp;amp;rft.jtitle=Mol+Syst+Biol.&amp;amp;rft.aulast=Forster+AC%2C+Church+GM&amp;amp;rft.au=Forster+AC%2C+Church+GM&amp;amp;rft.date=2006&amp;amp;rft.volume=2%3A45&amp;amp;rft.pages=45&amp;amp;rft_id=info:doi/10.1038%2Fmsb4100090&amp;amp;rft_id=info:pmid/16924266&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Benfey, P.; Protopapas, A.D. (2004). &lt;em&gt;Essentials of Genomics&lt;/em&gt;. Prentice Hall.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Essentials+of+Genomics&amp;amp;rft.aulast=Benfey&amp;amp;rft.aufirst=P.&amp;amp;rft.au=Benfey%2C%26%2332%3BP.&amp;amp;rft.date=2004&amp;amp;rft.pub=Prentice+Hall&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Brown, Terence A. (2002). &lt;em&gt;Genomes 2&lt;/em&gt;. Oxford: Bios Scientific Publishers. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/978-1859960295&quot; href=&quot;/wiki/Special:BookSources/978-1859960295&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;978-1859960295&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Genomes+2&amp;amp;rft.aulast=Brown&amp;amp;rft.aufirst=Terence+A.&amp;amp;rft.au=Brown%2C%26%2332%3BTerence+A.&amp;amp;rft.date=2002&amp;amp;rft.place=Oxford&amp;amp;rft.pub=Bios+Scientific+Publishers&amp;amp;rft.isbn=978-1859960295&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Gibson, Greg; Muse, Spencer V. (2004). &lt;em&gt;A Primer of Genome Science&lt;/em&gt; (Second ed.). Sunderland, Mass: Sinauer Assoc. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-87893-234-8&quot; href=&quot;/wiki/Special:BookSources/0-87893-234-8&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-87893-234-8&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=A+Primer+of+Genome+Science&amp;amp;rft.aulast=Gibson&amp;amp;rft.aufirst=Greg&amp;amp;rft.au=Gibson%2C%26%2332%3BGreg&amp;amp;rft.date=2004&amp;amp;rft.edition=Second&amp;amp;rft.place=Sunderland%2C+Mass&amp;amp;rft.pub=Sinauer+Assoc&amp;amp;rft.isbn=0-87893-234-8&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Gregory, T. Ryan (ed) (2005). &lt;em&gt;&lt;a title=&quot;The Evolution of the Genome&quot; href=&quot;/wiki/The_Evolution_of_the_Genome&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;The Evolution of the Genome&lt;/font&gt;&lt;/a&gt;&lt;/em&gt;. Elsevier. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-12-301463-8&quot; href=&quot;/wiki/Special:BookSources/0-12-301463-8&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-12-301463-8&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Gregory&amp;amp;rft.aufirst=T.+Ryan+%28ed%29&amp;amp;rft.au=Gregory%2C%26%2332%3BT.+Ryan+%28ed%29&amp;amp;rft.date=2005&amp;amp;rft.pub=Elsevier&amp;amp;rft.isbn=0-12-301463-8&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Reece, Richard J. (2004). &lt;em&gt;Analysis of Genes and Genomes&lt;/em&gt;. Chichester: John Wiley &amp;amp; Sons. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-470-84379-9&quot; href=&quot;/wiki/Special:BookSources/0-470-84379-9&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-470-84379-9&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Analysis+of+Genes+and+Genomes&amp;amp;rft.aulast=Reece&amp;amp;rft.aufirst=Richard+J.&amp;amp;rft.au=Reece%2C%26%2332%3BRichard+J.&amp;amp;rft.date=2004&amp;amp;rft.place=Chichester&amp;amp;rft.pub=John+Wiley+%26+Sons&amp;amp;rft.isbn=0-470-84379-9&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation book&quot;&gt;Saccone, Cecilia; Pesole, Graziano (2003). &lt;em&gt;Handbook of Comparative Genomics&lt;/em&gt;. Chichester: John Wiley &amp;amp; Sons. &lt;a title=&quot;International Standard Book Number&quot; href=&quot;/wiki/International_Standard_Book_Number&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;ISBN&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a title=&quot;Special:BookSources/0-471-39128-X&quot; href=&quot;/wiki/Special:BookSources/0-471-39128-X&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;0-471-39128-X&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Handbook+of+Comparative+Genomics&amp;amp;rft.aulast=Saccone&amp;amp;rft.aufirst=Cecilia&amp;amp;rft.au=Saccone%2C%26%2332%3BCecilia&amp;amp;rft.date=2003&amp;amp;rft.place=Chichester&amp;amp;rft.pub=John+Wiley+%26+Sons&amp;amp;rft.isbn=0-471-39128-X&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Werner, E. (2003). &amp;quot;In silico multicellular systems biology and minimal genomes&amp;quot;. &lt;em&gt;Drug Discov Today&lt;/em&gt; &lt;strong&gt;8&lt;/strong&gt; (24): 1121&amp;ndash;1127. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1016%2FS1359-6446%2803%2902918-0&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1016/S1359-6446(03)02918-0&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/14678738&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;14678738&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=In+silico+multicellular+systems+biology+and+minimal+genomes&amp;amp;rft.jtitle=Drug+Discov+Today&amp;amp;rft.aulast=Werner&amp;amp;rft.aufirst=E.&amp;amp;rft.au=Werner%2C%26%2332%3BE.&amp;amp;rft.date=2003&amp;amp;rft.volume=8&amp;amp;rft.issue=24&amp;amp;rft.pages=1121%E2%80%931127&amp;amp;rft_id=info:doi/10.1016%2FS1359-6446%2803%2902918-0&amp;amp;rft_id=info:pmid/14678738&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;font color=&quot;#3366bb&quot;&gt;[http://genomics.org Genomics.org]&lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;[http://omics.org Omics.org]&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://learn.genetics.utah.edu/content/begin/dna/builddna/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Build a DNA Molecule&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/articles/02_01/Sizing_genomes.shtml&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Some comparative genome sizes&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.dnai.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;DNA Interactive: The History of DNA Science&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.dnaftb.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;DNA From The Beginning&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genome.gov/10001772&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;All About The Human Genome Project from Genome.gov&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Animal genome size database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.rbgkew.org.uk/cval/homepage.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Plant genome size database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesonline.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GOLD:Genomes OnLine Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomenewsnetwork.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;The Genome News Network&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;NCBI Entrez Genome Project database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;NCBI Genome Primer&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://news.bbc.co.uk/1/hi/sci/tech/4994088.stm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;BBC News - Final genome 'chapter' published&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;https://www.crops.org/genome/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;The Plant Genome&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://img.jgi.doe.gov/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;IMG&lt;/font&gt;&lt;/a&gt; The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://camera.calit2.net/index.php/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;CAMERA&lt;/font&gt;&lt;/a&gt; Cyberinfrastructure for Metagenomics, data repository and bioinformatics tools for metagenomic research&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genecards.org/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GeneCards&lt;/font&gt;&lt;/a&gt; an integrated database of human genes.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://genome.igib.res.in/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Genome@IGIB&lt;/font&gt;&lt;/a&gt; Resources and News on the Zebrafish Genome Project @ IGIB.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.geknome.com&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;GeKnome Technologies Next-Gen Sequencing Data Analysis&lt;/font&gt;&lt;/a&gt; Next-Gen Sequencing Data Analysis for &lt;a title=&quot;Illumina&quot; href=&quot;/wiki/Illumina&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Illumina&lt;/font&gt;&lt;/a&gt; and &lt;a title=&quot;454&quot; href=&quot;/wiki/454&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;454&lt;/font&gt;&lt;/a&gt; Service from GeKnome Technologies.&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://ascb.org/ibioseminars/brenner/brenner1.cfm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;What Genomes Can Tell Us About the Past&lt;/font&gt;&lt;/a&gt; - lecture by &lt;a title=&quot;Sydney Brenner&quot; href=&quot;/wiki/Sydney_Brenner&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Sydney Brenner&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.imame.org/form/genome--mid80-frz.htm&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Genome metaphor, reflecting from formal-net hierarchies, and software binaries&lt;/font&gt;&lt;/a&gt;.&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=What_is_genomics%3F&diff=3473 What is genomics? 2011-02-03T07:57:29Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;font size=&quot;5&quot;&gt;What is genomics?&lt;/font&gt;&lt;br /&gt;<br /> &lt;br /&gt;<br /> Genomics&lt;/strong&gt; is the [[omics]] study of [[gene]]s of individual organisms,&amp;nbsp;populations, and species. &lt;br /&gt;<br /> &lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;It is also a paradigm of performing biological science that deviates from&amp;nbsp;investigating single genes, their functions, and roles. &lt;br /&gt;<br /> &lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;The main reason of an independent biological discipline is that it deals with very large sets of genetic information to automatically analyze information using interaction and network concepts. Genomics inevitably employs high performance computing and bioinformatics technologies.&lt;/font&gt;&lt;br /&gt;<br /> &amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span class=&quot;mw-headline&quot;&gt;&lt;font size=&quot;4&quot;&gt;&amp;nbsp; &lt;/font&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;div v:shape=&quot;_x0000_s1026&quot;&gt;&lt;span style=&quot;font-size: 32pt&quot;&gt;&lt;font color=&quot;#339966&quot; size=&quot;5&quot;&gt;&amp;quot;[[Genome sequencing is not Genomics]]&amp;quot;&lt;/font&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;&lt;br /&gt;<br /> &amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;strong&gt;&lt;span class=&quot;mw-headline&quot;&gt;&lt;font size=&quot;4&quot;&gt;History of the field&lt;/font&gt;&lt;/span&gt;&lt;/strong&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;Genomics was practically founded by Fred Sanger group in 1970s when they developed&amp;nbsp;a gene sequencing technique and completed the first [[genome]]s; namely bacteriophage &amp;Phi;-X174; (5,368 bp),&amp;nbsp;the human mitochondrial genome, and lamda virus.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.&lt;sup id=&quot;_ref-0&quot; class=&quot;reference&quot;&gt;[1]&lt;/sup&gt; In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.&lt;sup id=&quot;_ref-1&quot; class=&quot;reference&quot;&gt;[2]&lt;/sup&gt; The first DNA-based genome to be sequenced in its entirety was that of bacteriophage &amp;Phi;-X174; (5,368 bp), sequenced by Frederick Sanger in 1977&lt;sup id=&quot;_ref-2&quot; class=&quot;reference&quot;&gt;[3]&lt;/sup&gt;. The first free-living organism to be sequenced was that of &lt;em&gt;Haemophilus influenzae&lt;/em&gt; (1.8 Mb) in 1995, and since then genomes are being sequenced at a rapid pace. A rough draft of the human genome was completed by Sanger centre and the Human Genome Project in early 2001.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;As of September 2007, the complete sequence was known of about 1879 viruses &lt;sup id=&quot;_ref-3&quot; class=&quot;reference&quot;&gt;[4]&lt;/sup&gt;, 577 bacterial species and roughly 23 eukaryote organisms, of which about half are fungi. &lt;sup id=&quot;_ref-4&quot; class=&quot;reference&quot;&gt;[5]&lt;/sup&gt; Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as &lt;em&gt;Haemophilus influenzae&lt;/em&gt;. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (&lt;em&gt;Saccharomyces cerevisiae&lt;/em&gt;) has long been an important model organism for the eukaryotic cell, while the fruit fly &lt;em&gt;Drosophila melanogaster&lt;/em&gt; has been a very important tool (notably in early pre-molecular genetics). The worm &lt;em&gt;Caenorhabditis elegans&lt;/em&gt; is an often used simple model for multicellular organisms. The zebrafish &lt;em&gt;Brachydanio rerio&lt;/em&gt; is used for many developmental studies on the molecular level and the flower &lt;em&gt;Arabidopsis thaliana&lt;/em&gt; is a model organism for flowering plants. The Japanese pufferfish (&lt;em&gt;Takifugu rubripes&lt;/em&gt;) and the spotted green pufferfish (&lt;em&gt;Tetraodon nigroviridis&lt;/em&gt;) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. &lt;sup id=&quot;_ref-5&quot; class=&quot;reference&quot;&gt;[6]&lt;/sup&gt; &lt;sup id=&quot;_ref-6&quot; class=&quot;reference&quot;&gt;[7]&lt;/sup&gt; The mammals dog (&lt;em&gt;Canis familiaris&lt;/em&gt;), &lt;sup id=&quot;_ref-7&quot; class=&quot;reference&quot;&gt;[8]&lt;/sup&gt; brown rat (&lt;em&gt;Rattus norvegicus&lt;/em&gt;), mouse (&lt;em&gt;Mus musculus&lt;/em&gt;), and chimpanzee (&lt;em&gt;Pan troglodytes&lt;/em&gt;) are all important model animals in medical research.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;&amp;nbsp;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;strong&gt;&lt;span class=&quot;mw-headline&quot;&gt;&lt;font size=&quot;4&quot;&gt;Bacteriophage Genomics&lt;/font&gt;&lt;/span&gt;&lt;/strong&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;Bacteriophages have played and continue to play a key role in bacterial genetics and molecular biology. Historically, they were used to define gene structure and gene regulation. Also the first genome to be sequenced was a bacteriophage. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying phage evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of prophage sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.&lt;sup id=&quot;_ref-McGrath_0&quot; class=&quot;reference&quot;&gt;[9]&lt;/sup&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;strong&gt;&lt;span class=&quot;mw-headline&quot;&gt;&lt;font size=&quot;4&quot;&gt;Cyanobacteria Genomics&lt;/font&gt;&lt;/span&gt;&lt;/strong&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;At present there are 24 cyanobacteria for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six &lt;em&gt;Prochlorococcus&lt;/em&gt;&lt;em&gt;Synechococcus&lt;/em&gt; strains, &lt;em&gt;Trichodesmium erythraeum&lt;/em&gt; IMS101 and &lt;em&gt;Crocosphaera watsonii&lt;/em&gt; [[WH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further &lt;em&gt;Prochlorococcus&lt;/em&gt; and marine &lt;em&gt;Synechococcus&lt;/em&gt; isolates, &lt;em&gt;Acaryochloris&lt;/em&gt; and &lt;em&gt;Prochloron&lt;/em&gt;, the N&lt;sub&gt;2&lt;/sub&gt;-fixing filamentous cyanobacteria &lt;em&gt;Nodularia spumigena&lt;/em&gt;, &lt;em&gt;Lyngbya aestuarii&lt;/em&gt; and &lt;em&gt;Lyngbya majuscula&lt;/em&gt;, as well as bacteriophages infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of photosynthesis, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.&lt;sup id=&quot;_ref-Herrero_0&quot; class=&quot;reference&quot;&gt;[10]&lt;/sup&gt;&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;4&quot;&gt;[[Genome sequencing and genomics]]&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;strong&gt;&lt;span class=&quot;mw-headline&quot;&gt;&lt;font size=&quot;4&quot;&gt;See also&lt;/font&gt;&lt;/span&gt;&lt;/strong&gt;&lt;/p&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Pangenomics]] and [[Pangenome]]&lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Personal Genome Project]]&lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Omics]] &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Proteomics]] &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Interactomics]] &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Functional genomics]] &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Computational genomics]] &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Nitrogenomics]]&lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[[Pathogenomics]]&lt;/font&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;strong&gt;&lt;span class=&quot;mw-headline&quot;&gt;&lt;font size=&quot;4&quot;&gt;References&lt;/font&gt;&lt;/span&gt;&lt;/strong&gt;&lt;/p&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;_note-0&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-0&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; Min Jou W, Haegeman G, Ysebaert M, Fiers W., Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature. 1972 May 12;237(5350):82-8 &lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-1&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-1&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; Fiers W et al., Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene, Nature, 260, 500-507, 1976 &lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-2&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-2&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-95 &lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-3&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-3&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; title=&quot;http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html&quot;&gt;&lt;em&gt;The Viral Genomes Resource&lt;/em&gt;, NCBI Friday, 14 September, 2007&lt;/a&gt;&lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-4&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-4&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; title=&quot;http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html&quot;&gt;&lt;em&gt;Genome Project Statistic&lt;/em&gt;, NCBI Friday, 14 September, 2007&lt;/a&gt;&lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-5&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-5&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; title=&quot;http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm&quot; rel=&quot;nofollow&quot; href=&quot;http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm&quot;&gt;BBC article &lt;em&gt;Human gene number slashed&lt;/em&gt; from Wednesday, 20 October, 2004&lt;/a&gt;&lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-6&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-6&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; title=&quot;http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml&quot; rel=&quot;nofollow&quot; href=&quot;http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml&quot;&gt;CBSE News, Thursday October 16, 2003&lt;/a&gt;&lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-7&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-7&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; title=&quot;http://www.genome.gov/12511476&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genome.gov/12511476&quot;&gt;NHGRI, pressrelease of the publishing of the dog genome&lt;/a&gt;&lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-McGrath&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-McGrath_0&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; &lt;cite style=&quot;font-style: normal&quot; class=&quot;book&quot;&gt;Mc Grath S and van Sinderen D (editors). (2007). &lt;em&gt;&lt;a class=&quot;external text&quot; title=&quot;http://www.horizonpress.com/phage&quot; rel=&quot;nofollow&quot; href=&quot;http://www.horizonpress.com/phage&quot;&gt;Bacteriophage: Genetics and Molecular Biology&lt;/a&gt;&lt;/em&gt;, 1st ed., Caister Academic Press. &lt;a class=&quot;external text&quot; title=&quot;http://www.horizonpress.com/phage&quot; rel=&quot;nofollow&quot; href=&quot;http://www.horizonpress.com/phage&quot;&gt;ISBN 978-1-904455-14-1&lt;/a&gt; .&lt;/cite&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Bacteriophage%3A+Genetics+and+Molecular+Biology&amp;amp;rft.au=Mc+Grath+S+and+van+Sinderen+D+%28editors%29.&amp;amp;rft.edition=1st+ed.&amp;amp;rft.pub=Caister+Academic+Press&amp;amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fphage&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/font&gt;&lt;/li&gt;<br /> &lt;li id=&quot;_note-Herrero&quot;&gt;&lt;font size=&quot;3&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Genomics#_ref-Herrero_0&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; &lt;cite style=&quot;font-style: normal&quot; class=&quot;book&quot;&gt;Herrero A and Flores E (editor). (2008). &lt;em&gt;&lt;a class=&quot;external text&quot; title=&quot;http://www.horizonpress.com/cyan&quot; rel=&quot;nofollow&quot; href=&quot;http://www.horizonpress.com/cyan&quot;&gt;The Cyanobacteria: Molecular Biology, Genomics and Evolution&lt;/a&gt;&lt;/em&gt;, 1st ed., Caister Academic Press. &lt;a class=&quot;external text&quot; title=&quot;http://www.horizonpress.com/cyan&quot; rel=&quot;nofollow&quot; href=&quot;http://www.horizonpress.com/cyan&quot;&gt;ISBN 978-1-904455-15-8&lt;/a&gt; .&lt;/cite&gt;&lt;/font&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=The+Cyanobacteria%3A+Molecular+Biology%2C+Genomics+and+Evolution&amp;amp;rft.au=Herrero+A+and+Flores+E+%28editor%29.&amp;amp;rft.edition=1st+ed.&amp;amp;rft.pub=Caister+Academic+Press&amp;amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fcyan&quot;&gt;&lt;font size=&quot;3&quot;&gt; &lt;/font&gt;&lt;br /&gt;<br /> &lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;p&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=The+Cyanobacteria%3A+Molecular+Biology%2C+Genomics+and+Evolution&amp;amp;rft.au=Herrero+A+and+Flores+E+%28editor%29.&amp;amp;rft.edition=1st+ed.&amp;amp;rft.pub=Caister+Academic+Press&amp;amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fcyan&quot;&gt;&lt;font size=&quot;5&quot;&gt;&lt;br /&gt;<br /> Web links&lt;/font&gt;&lt;br /&gt;<br /> [http://en.wikipedia.org/wiki/Genomics Wikipedia Genomics link]&lt;br /&gt;<br /> [http://omics.org Omics.org]&lt;br /&gt;<br /> [http://totalomics.com Totalomics.com]&lt;br /&gt;<br /> &lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Omics&diff=3425 Omics 2011-01-16T15:51:28Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;strong&gt;Omics&lt;/strong&gt; is a general term for a broad discipline of science and engineering for analyzing the interactions of biological information objects in various&amp;nbsp;&lt;/span&gt;&lt;a title=&quot;Omes&quot; href=&quot;http://omics.org/index.php/Omes&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;omes&lt;/span&gt;&lt;/a&gt;&lt;span style=&quot;font-size: small&quot;&gt;. These include genomics, proteomics, metabolomics, expressomics&amp;nbsp;and interactomics. The main focus is on 1) mapping information objects such as genes and proteins, 2) finding interaction relationships among the objects and 3) engineering the networks and objects to understand and manipulate the regulatory mechanisms.&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;br /&gt;<br /> [http://omics.org Omics.org] &lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_Japanese_genome&diff=3424 The first Japanese genome 2011-01-16T14:34:06Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;em&gt;Nature Genetics &lt;/em&gt;| doi:10.1038/ng.691&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;strong&gt;Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing&lt;/strong&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;strong&gt;&lt;br /&gt;<br /> &lt;/strong&gt;Akihiro Fujimoto1,2, Hidewaki Nakagawa1, Naoya Hosono1, Kaoru Nakano1, Tetsuo Abe1, Keith A Boroevich1, Masao Nagasaki3, Rui Yamaguchi3, Tetsuo Shibuya3, Michiaki Kubo1, Satoru Miyano2,3, Yusuke Nakamura1,3 &amp;amp; Tatsuhiko Tsunoda1,2&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;We report the analysis of a Japanese male using high-throughput sequencing to &amp;times;40 coverage. More than 99% of the sequence reads were mapped to the reference human genome. Using a Bayesian decision method, we identified 3,132,608 single nucleotide variations (SNVs). Comparison with six previously reported genomes revealed an excess of singleton nonsense and nonsynonymous SNVs, as well as singleton SNVs in conserved non-coding regions. We also identified 5,319 deletions smaller than 10 kb with high accuracy, in addition to copy number variations and rearrangements. De novo assembly of the unmapped sequence reads generated around 3 Mb of novel sequence, which showed high similarity to non-reference human genomes and the human herpesvirus 4 genome. Our analysis suggests that considerable variation remains undiscovered in the human genome and that whole-genome sequencing is an invaluable tool for obtaining a complete understanding of human genetic variation.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_Japanese_genome&diff=3423 The first Japanese genome 2011-01-16T14:33:55Z <p>WikiSysop: Created page with &quot;&lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;em&gt;Nature Genetics &lt;/em&gt;| doi:10.1038/ng.691&lt;/span&gt;&lt;/p&gt; &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;strong&gt;Whole-genome sequencing and comprehensive var...&quot;</p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;em&gt;Nature Genetics &lt;/em&gt;| doi:10.1038/ng.691&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;strong&gt;Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing&lt;/strong&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;strong&gt;&lt;br /&gt;<br /> &lt;/strong&gt;Akihiro Fujimoto1,2, Hidewaki Nakagawa1, Naoya Hosono1, Kaoru Nakano1, Tetsuo Abe1, Keith A Boroevich1, Masao Nagasaki3, Rui Yamaguchi3, Tetsuo Shibuya3, Michiaki Kubo1, Satoru Miyano2,3, Yusuke Nakamura1,3 &amp;amp; Tatsuhiko Tsunoda1,2&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;We report the analysis of a Japanese male using high-throughput sequencing to &amp;times;40 coverage. More than 99% of the sequence reads were mapped to the reference human genome. Using a Bayesian decision method, we identified 3,132,608 single nucleotide variations (SNVs). Comparison with six previously reported genomes revealed an excess of singleton nonsense and nonsynonymous SNVs, as well as singleton SNVs in conserved non-coding regions. We also identified 5,319 deletions smaller than 10 kb with high accuracy, in addition to copy number variations and rearrangements. De novo assembly of the unmapped sequence reads generated around 3 Mb of novel sequence, which showed high similarity to non-reference human genomes and the human herpesvirus 4 genome. Our analysis suggests that considerable variation remains undiscovered in the human genome and that whole-genome sequencing is an invaluable tool for obtaining a complete understanding of human genetic variation.&lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_genomes&diff=3422 The first genomes 2011-01-16T14:33:33Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;b&gt;&lt;span style=&quot;font-size: large&quot;&gt;The first genomes in the genomics history.&lt;/span&gt;&lt;/b&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;[[The first human genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp; [[The first Caucasian genome]]&amp;nbsp;&amp;nbsp; [[The first Asian genome]]&amp;nbsp; [[The first Chinese genome]]&amp;nbsp; [[The first Korean genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; [[The first individual genome]] Venter's.&amp;nbsp; [[James Watson Genome]]&amp;nbsp;&amp;nbsp; [[The first African Genome]] NA18507&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; [[The first Japanese genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;[[The first bacterial genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;[[The first plant genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;[[The first Archae genome]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;[[The first&amp;nbsp;yeast genome]]: April 1996&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;hr /&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;[[Top genomics centers]]&amp;nbsp; |&amp;nbsp; [[Genomics News and Ads Archive|Genomics news]]&amp;nbsp; |&amp;nbsp; [[Genomics people]]&amp;nbsp;&amp;nbsp;|&amp;nbsp; [[Genomics company]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=What_is_genome_size%3F&diff=3421 What is genome size? 2011-01-16T07:25:41Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;b&gt;Genome size&lt;/b&gt; is the total amount of DNA contained within one copy of a genome. It is typically measured in terms of mass in picograms (trillionths (10&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;&amp;minus;12&lt;/font&gt;&lt;/sup&gt;) of a gram, abbreviated pg) or less frequently in Daltons or as the total number of nucleotide base pairs typically in megabases (millions of base pairs, abbreviated Mb or Mbp).&lt;/p&gt;<br /> &lt;p&gt;One picogram equals 978 megabases.&lt;sup id=&quot;cite_ref-Dolezel2003_0-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[1]&lt;/font&gt;&lt;/sup&gt; In diploid organisms, genome size is used interchangeably with the term [[C-value]]. An organism's complexity is not directly proportional to its genome size; some single cell organisms have much more DNA than humans (see Junk DNA and C-value enigma).&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Origin_of_the_term&quot; class=&quot;mw-headline&quot;&gt;Origin of the term&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;The term &amp;quot;genome size&amp;quot; is often erroneously attributed to Hinegardner&lt;sup id=&quot;cite_ref-Hinegardner1976_1-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;, even in discussions dealing specifically with terminology in this area of research (e.g., Greilhuber, 2005&lt;sup id=&quot;cite_ref-Greilhuber2005_2-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[3]&lt;/font&gt;&lt;/sup&gt;). Notably, Hinegardner&lt;sup id=&quot;cite_ref-Hinegardner1976_1-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt; used the term only once: in the title. The term actually seems to have first appeared in 1968 when Hinegardner wondered, in the last paragraph of his article, whether &amp;quot;cellular DNA content does, in fact, reflect genome size&amp;quot;.&lt;sup id=&quot;cite_ref-Hinegardner1968_3-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[4]&lt;/font&gt;&lt;/sup&gt; In this context, &amp;quot;genome size&amp;quot; was being used in the sense of genotype to mean the number of genes. In a paper submitted only two months later (in February 1969), Wolf et al. (1969)&lt;sup id=&quot;cite_ref-Wolf1969_4-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[5]&lt;/font&gt;&lt;/sup&gt; used the term &amp;quot;genome size&amp;quot; throughout and in its present usage; therefore these authors should probably be credited with originating the term in its modern sense. By the early 1970s, &amp;quot;genome size&amp;quot; was in common usage with its present definition, probably as a result of its inclusion in Susumu Ohno's influential book &lt;i&gt;Evolution by Gene Duplication&lt;/i&gt;, published in 1970.&lt;sup id=&quot;cite_ref-Ohno1970_5-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[6]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Variation_in_genome_size_and_gene_content&quot; class=&quot;mw-headline&quot;&gt;Variation in genome size and gene content&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;thumb tright&quot;&gt;<br /> &lt;div style=&quot;width: 252px&quot; class=&quot;thumbinner&quot;&gt;<br /> &lt;div class=&quot;thumbcaption&quot;&gt;<br /> &lt;div class=&quot;magnify&quot;&gt;&amp;nbsp;&lt;/div&gt;<br /> [[File:Genome Sizes.png|thumb]]Genome Sizes Abizar&lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;p&gt;The genome sizes of thousands of eukaryotes have been analyzed over the past 50 years, and these data are available in online databases for animals, plants, and fungi (see external links). Nuclear genome size is typically measured in eukaryotes using either densitometric measurements of Feulgen-stained nuclei (previously using specialized densitometers, now more commonly using computerized image analysis&lt;sup id=&quot;cite_ref-Hardie2002_6-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[7]&lt;/font&gt;&lt;/sup&gt;) or flow cytometry. In prokaryotes, pulsed-field gel electrophoresis and complete genome sequencing are the predominant methods of genome size determination. Nuclear genome sizes are well known to vary enormously among eukaryotic species. In animals they range more than 3,300-fold, and in land plants they differ by a factor of about 1,000.&lt;sup id=&quot;cite_ref-Bennett2005_7-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[8]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Gregory2005_8-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[9]&lt;/font&gt;&lt;/sup&gt; Protist genomes have been reported to vary more than 300,000-fold in size, but the high end of this range (&lt;i&gt;Amoeba&lt;/i&gt;) has been called into question. In eukaryotes (but not prokaryotes), variation in genome size is not proportional to the number of genes, an observation that was deemed wholly counterintuitive before the discovery of non-coding DNA and which became known as the C-value paradox as a result. However, although there is no longer any paradoxical aspect to the discrepancy between genome size and gene number, this term remains in common usage. For reasons of conceptual clarification, the various puzzles that remain with regard to genome size variation instead have been suggested by one author to more accurately comprise a puzzle or an enigma (the C-value enigma). Genome size correlates with a range of features at the cell and organism levels, including cell size, cell division rate, and, depending on the taxon, body size, metabolic rate, developmental rate, organ complexity, geographical distribution, and/or extinction risk (for recent reviews, see Bennett and Leitch 2005&lt;sup id=&quot;cite_ref-Bennett2005_7-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[8]&lt;/font&gt;&lt;/sup&gt;; Gregory 2005&lt;sup id=&quot;cite_ref-Gregory2005_8-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[9]&lt;/font&gt;&lt;/sup&gt;). Based on completely sequenced genome data currently (as of April 2009) available, log-transformed gene number forms a linear correlation with log-transformed genome size in bacteria, archea, viruses, and organelles combined whereas a nonlinear (semi-natural log) correlation in eukaryotes (Hou and Lin 2009 &lt;sup id=&quot;cite_ref-Hou2009_9-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[10]&lt;/font&gt;&lt;/sup&gt;). The nonlinear correlation for eukaryotes, although claim of its existence contrasts the previous view that no correlation exists for this group of organisms, reflects disproportinately fast increasing noncoding DNA in increasingly large eukaryotic genomes. Although sequenced genome data are practically biased toward small genomes, which may compromise the accuracy of the empirically derived correlation, and the ultimate proof of the correlation remains to be obtained by sequencing some of the largest eukaryotic genomes, current data do not seem to rule out a correlation.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Genome_reduction&quot; class=&quot;mw-headline&quot;&gt;Genome reduction&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;b&gt;Genome reduction&lt;/b&gt;, also known as &lt;b&gt;Genome degradation&lt;/b&gt;, is the process by which a genome shrinks relative to its ancestor. Genomes fluctuate in size regularly, especially in Bacteria, but in some situations a genome has drastically lost content during some period.&lt;/p&gt;<br /> &lt;p&gt;The most evolutionary significant cases of genome reduction may be the eukaryotic organelles that are derived from bacteria: the mitochondrion and plastid. These organelles are descended from endosymbionts, which can only survive within the host cell and which the host cell likewise needs for survival. Many mitochondria have less than 20 genes in their entire genome, whereas a free-living bacterium generally has at least 1000 genes. Many genes have been transferred to the host nucleus, while others have simply been lost and their function replaced by host processes.&lt;/p&gt;<br /> &lt;p&gt;Other bacteria have become endosymbionts or obligate intracellular pathogens and experienced extensive genome reduction as a result. This process seems to be dominated by genetic drift resulting from small population size, low recombination rates, and high mutation rates, as opposed to selection for smaller genomes.&lt;/p&gt;<br /> &lt;p&gt;Some free-living marine bacterioplanktons also shows signs of genome reduction, which are hypothesized to be driven by natural selection.&lt;sup id=&quot;cite_ref-Dufresne2005_10-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[11]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Giovannoni2005_11-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[12]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Giovannoni2008_12-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[13]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;h3&gt;&lt;span id=&quot;Genome_reduction_in_obligate_endosymbiotic_species&quot; class=&quot;mw-headline&quot;&gt;Genome reduction in obligate endosymbiotic species&lt;/span&gt;&lt;/h3&gt;<br /> &lt;p&gt;&lt;b&gt;Obligate endosymbiotic species&lt;/b&gt; are characterized by a complete inability to survive external to their &lt;b&gt;host&lt;/b&gt; environment. These species have become a considerable threat to human health, as they are often highly capable of evading human immune systems and manipulating the host environment to acquire nutrients. A common explanation for these keen manipulative abilities is the &lt;b&gt;compact&lt;/b&gt; and &lt;b&gt;efficient&lt;/b&gt; genomic structure consistently found in obligate endosymbionts. This compact genome structure is the result of massive losses of extraneous DNA - an occurrence that is exclusively associated with the loss of a free-living stage. In fact, as much as 90% of the genetic material can be lost when a species makes the evolutionary transition from a &lt;b&gt;free-living&lt;/b&gt; to &lt;b&gt;obligate intracellular&lt;/b&gt; lifestyle. Common examples of species with reduced genomes include: &lt;i&gt;Buchnera aphidicola&lt;/i&gt;, &lt;i&gt;Rickettsia prowazekii&lt;/i&gt; and &lt;i&gt;Mycobacterium leprae&lt;/i&gt;. One obligate endosymbiont of psyllid, &lt;i&gt;Candidatus Carsonella ruddii&lt;/i&gt;, has the smallest genome currently known among cellular organisms at 160kb.&lt;sup id=&quot;cite_ref-Nakabachi2006_13-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[14]&lt;/font&gt;&lt;/sup&gt; It is important to note, however, that some obligate intracellular species have positive fitness effects on their hosts. (See also mutualists and parasites.)&lt;/p&gt;<br /> &lt;p&gt;The &lt;b&gt;reductive evolution model&lt;/b&gt; has been proposed as an effort to define the genomic commonalities seen in all obligate endosymbionts.&lt;sup id=&quot;cite_ref-Wernegreen2005_14-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[15]&lt;/font&gt;&lt;/sup&gt; This model illustrates four general features of reduced genomes and obligate intracellular species:&lt;/p&gt;<br /> &lt;ol&gt;<br /> &lt;li&gt;&amp;lsquo;genome streamlining&amp;rsquo; resulting from relaxed selection on genes that are superfluous in the intracellular environment;&lt;/li&gt;<br /> &lt;li&gt;a bias towards deletions (rather than insertions), which heavily affects genes that have been disrupted by accumulation of mutations (pseudogenes)&lt;sup id=&quot;cite_ref-Moran2004_15-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[16]&lt;/font&gt;&lt;/sup&gt;;&lt;/li&gt;<br /> &lt;li&gt;very little or no capability for acquiring new DNA; and&lt;/li&gt;<br /> &lt;li&gt;considerable reduction of effective population size in endosymbiotic populations, particularly in species that rely on vertical transmission.&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;p&gt;Based on this model, it is clear that endosymbionts face different adaptive challenges than free-living species.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Conversion_from_picograms_.28pg.29_to_base_pairs_.28bp.29&quot; class=&quot;mw-headline&quot;&gt;Conversion from picograms (pg) to base pairs (bp)&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;rellink relarticle mainarticle&quot;&gt;Main article: C-value&lt;/div&gt;<br /> &lt;dl&gt;&lt;dd&gt;&lt;/dd&gt;&lt;/dl&gt;<br /> &lt;p&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;[[File:Pico gram to basepair eq.png]]&lt;/p&gt;<br /> &lt;p&gt;or simply:&lt;/p&gt;<br /> &lt;dl&gt;&lt;dd&gt;&lt;span class=&quot;texhtml&quot;&gt;&lt;font face=&quot;바탕&quot;&gt;1pg = 978Mb&lt;/font&gt;&lt;/span&gt;&lt;sup id=&quot;cite_ref-Dolezel2003_0-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[1]&lt;/font&gt;&lt;/sup&gt;&lt;/dd&gt;&lt;/dl&gt;<br /> &lt;h2&gt;&lt;span id=&quot;See_also&quot; class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;Comparison of different genome sizes&lt;/li&gt;<br /> &lt;li&gt;Animal Genome Size Database&lt;/li&gt;<br /> &lt;li&gt;Cell nucleus&lt;/li&gt;<br /> &lt;li&gt;Comparative genomics&lt;/li&gt;<br /> &lt;li&gt;C-value&lt;/li&gt;<br /> &lt;li&gt;C-value enigma&lt;/li&gt;<br /> &lt;li&gt;Genome&lt;/li&gt;<br /> &lt;li&gt;Human genome&lt;/li&gt;<br /> &lt;li&gt;Junk DNA&lt;/li&gt;<br /> &lt;li&gt;Noncoding DNA&lt;/li&gt;<br /> &lt;li&gt;Plant DNA C-values Database&lt;/li&gt;<br /> &lt;li&gt;Selfish DNA&lt;/li&gt;<br /> &lt;li&gt;Transposable elements&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div style=&quot;column-count: 2; -moz-column-count: 2; -webkit-column-count: 2&quot; class=&quot;references-small references-column-count references-column-count-2&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;cite_note-Dolezel2003-0&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation Journal&quot;&gt;Dolezel J, Barto&amp;scaron; J, Voglmayr H, Greilhuber J (2003). &amp;quot;Nuclear DNA content and genome size of trout and human&amp;quot;. &lt;i&gt;Cytometry A&lt;/i&gt; &lt;b&gt;51&lt;/b&gt; (2): 127&amp;ndash;128. doi:10.1002/cyto.a.10013. PMID&amp;nbsp;12541287.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Nuclear+DNA+content+and+genome+size+of+trout+and+human&amp;amp;rft.jtitle=Cytometry+A&amp;amp;rft.aulast=Dolezel+J%2C+Barto%C5%A1+J%2C+Voglmayr+H%2C+Greilhuber+J&amp;amp;rft.au=Dolezel+J%2C+Barto%C5%A1+J%2C+Voglmayr+H%2C+Greilhuber+J&amp;amp;rft.date=2003&amp;amp;rft.volume=51&amp;amp;rft.issue=2&amp;amp;rft.pages=127%E2%80%93128&amp;amp;rft_id=info:doi/10.1002%2Fcyto.a.10013&amp;amp;rft_id=info:pmid/12541287&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hinegardner1976-1&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Hinegardner R (1976). &amp;quot;Evolution of genome size&amp;quot;. In F.J. Ayala. &lt;i&gt;Molecular Evolution&lt;/i&gt;. Sinauer Associates, Inc., Sunderland. pp.&amp;nbsp;179&amp;ndash;199.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Evolution+of+genome+size&amp;amp;rft.atitle=Molecular+Evolution&amp;amp;rft.aulast=Hinegardner+R&amp;amp;rft.au=Hinegardner+R&amp;amp;rft.date=1976&amp;amp;rft.pages=pp.%26nbsp%3B179%E2%80%93199&amp;amp;rft.pub=Sinauer+Associates%2C+Inc.%2C+Sunderland&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Greilhuber2005-2&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Greilhuber J, Doležel J, Lys&amp;aacute;k M, Bennett MD (2005). &amp;quot;The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents&amp;quot;. &lt;i&gt;Annals of Botany&lt;/i&gt; &lt;b&gt;95&lt;/b&gt; (1): 255&amp;ndash;260. doi:10.1093/aob/mci019. PMID&amp;nbsp;15596473.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+origin%2C+evolution+and+proposed+stabilization+of+the+terms+%27genome+size%27+and+%27C-value%27+to+describe+nuclear+DNA+contents&amp;amp;rft.jtitle=Annals+of+Botany&amp;amp;rft.aulast=Greilhuber+J%2C+Dole%C5%BEel+J%2C+Lys%C3%A1k+M%2C+Bennett+MD&amp;amp;rft.au=Greilhuber+J%2C+Dole%C5%BEel+J%2C+Lys%C3%A1k+M%2C+Bennett+MD&amp;amp;rft.date=2005&amp;amp;rft.volume=95&amp;amp;rft.issue=1&amp;amp;rft.pages=255%E2%80%93260&amp;amp;rft_id=info:doi/10.1093%2Faob%2Fmci019&amp;amp;rft_id=info:pmid/15596473&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hinegardner1968-3&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hinegardner R (1968). &amp;quot;Evolution of cellular DNA content in teleost fishes&amp;quot;. &lt;i&gt;American Naturalist&lt;/i&gt; &lt;b&gt;102&lt;/b&gt;: 517&amp;ndash;523. doi:10.1086/282564.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Evolution+of+cellular+DNA+content+in+teleost+fishes&amp;amp;rft.jtitle=American+Naturalist&amp;amp;rft.aulast=Hinegardner+R&amp;amp;rft.au=Hinegardner+R&amp;amp;rft.date=1968&amp;amp;rft.volume=102&amp;amp;rft.pages=517%E2%80%93523&amp;amp;rft_id=info:doi/10.1086%2F282564&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Wolf1969-4&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Wolf U, Ritter H, Atkin NB, Ohno S (1969). &amp;quot;Polyploidization in the fish family Cyprinidae, Order Cypriniformes. I. DNA-content and chromosome sets in various species of Cyprinidae&amp;quot;. &lt;i&gt;Humangenetik&lt;/i&gt; &lt;b&gt;7&lt;/b&gt; (3): 240&amp;ndash;244. PMID&amp;nbsp;5800705.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Polyploidization+in+the+fish+family+Cyprinidae%2C+Order+Cypriniformes.+I.+DNA-content+and+chromosome+sets+in+various+species+of+Cyprinidae&amp;amp;rft.jtitle=Humangenetik&amp;amp;rft.aulast=Wolf+U%2C+Ritter+H%2C+Atkin+NB%2C+Ohno+S&amp;amp;rft.au=Wolf+U%2C+Ritter+H%2C+Atkin+NB%2C+Ohno+S&amp;amp;rft.date=1969&amp;amp;rft.volume=7&amp;amp;rft.issue=3&amp;amp;rft.pages=240%E2%80%93244&amp;amp;rft_id=info:pmid/5800705&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Ohno1970-5&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation book&quot;&gt;Ohno S (1970). &lt;i&gt;Evolution by Gene Duplication&lt;/i&gt;. New York: Springer-Verlag. ISBN&amp;nbsp;0045750157.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Evolution+by+Gene+Duplication&amp;amp;rft.aulast=Ohno+S&amp;amp;rft.au=Ohno+S&amp;amp;rft.date=1970&amp;amp;rft.place=New+York&amp;amp;rft.pub=Springer-Verlag&amp;amp;rft.isbn=0045750157&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hardie2002-6&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hardie DC, Gregory TR, Hebert PDN (2002). &amp;quot;From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry&amp;quot;. &lt;i&gt;Journal of Histochemistry and Cytochemistry&lt;/i&gt; &lt;b&gt;50&lt;/b&gt; (6): 735&amp;ndash;749. PMID&amp;nbsp;12019291.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=From+pixels+to+picograms%3A+a+beginners%27+guide+to+genome+quantification+by+Feulgen+image+analysis+densitometry&amp;amp;rft.jtitle=Journal+of+Histochemistry+and+Cytochemistry&amp;amp;rft.aulast=Hardie+DC%2C+Gregory+TR%2C+Hebert+PDN&amp;amp;rft.au=Hardie+DC%2C+Gregory+TR%2C+Hebert+PDN&amp;amp;rft.date=2002&amp;amp;rft.volume=50&amp;amp;rft.issue=6&amp;amp;rft.pages=735%E2%80%93749&amp;amp;rft_id=info:pmid/12019291&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Bennett2005-7&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Bennett MD, Leitch IJ (2005). &amp;quot;Genome size evolution in plants&amp;quot;. In T.R. Gregory. &lt;i&gt;The Evolution of the Genome&lt;/i&gt;. San Diego: Elsevier. pp.&amp;nbsp;89&amp;ndash;162.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Genome+size+evolution+in+plants&amp;amp;rft.atitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Bennett+MD%2C+Leitch+IJ&amp;amp;rft.au=Bennett+MD%2C+Leitch+IJ&amp;amp;rft.date=2005&amp;amp;rft.pages=pp.%26nbsp%3B89%E2%80%93162&amp;amp;rft.place=San+Diego&amp;amp;rft.pub=Elsevier&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Gregory2005-8&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Gregory TR (2005). &amp;quot;Genome size evolution in animals&amp;quot;. In T.R. Gregory. &lt;i&gt;The Evolution of the Genome&lt;/i&gt;. San Diego: Elsevier. pp.&amp;nbsp;3&amp;ndash;87.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Genome+size+evolution+in+animals&amp;amp;rft.atitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Gregory+TR&amp;amp;rft.au=Gregory+TR&amp;amp;rft.date=2005&amp;amp;rft.pages=pp.%26nbsp%3B3%E2%80%9387&amp;amp;rft.place=San+Diego&amp;amp;rft.pub=Elsevier&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hou2009-9&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hou Y, Lin S (2009). &amp;quot;Distinct Gene Number- Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes&amp;quot;. &lt;i&gt;PLoS ONE&lt;/i&gt; &lt;b&gt;4&lt;/b&gt; (9): e6978.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Distinct+Gene+Number-+Genome+Size+Relationships+for+Eukaryotes+and+Non-Eukaryotes%3A+Gene+Content+Estimation+for+Dinoflagellate+Genomes&amp;amp;rft.jtitle=PLoS+ONE&amp;amp;rft.aulast=Hou+Y%2C+Lin+S&amp;amp;rft.au=Hou+Y%2C+Lin+S&amp;amp;rft.date=2009&amp;amp;rft.volume=4&amp;amp;rft.issue=9&amp;amp;rft.pages=e6978&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Dufresne2005-10&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Dufresne A, Garczarek L, Partensky F (2005). &amp;quot;Accelerated evolution associated with genome reduction in a free-living prokaryote&amp;quot;. &lt;i&gt;Genome Biol&lt;/i&gt; &lt;b&gt;6&lt;/b&gt;: R14.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Accelerated+evolution+associated+with+genome+reduction+in+a+free-living+prokaryote&amp;amp;rft.jtitle=Genome+Biol&amp;amp;rft.aulast=Dufresne+A%2C+Garczarek+L%2C+Partensky+F&amp;amp;rft.au=Dufresne+A%2C+Garczarek+L%2C+Partensky+F&amp;amp;rft.date=2005&amp;amp;rft.volume=6&amp;amp;rft.pages=R14&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Giovannoni2005-11&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Giovannoni SJ, et al. (2005). &amp;quot;Genome streamlining in a cosmopolitan oceanic bacterium&amp;quot;. &lt;i&gt;Science&lt;/i&gt; &lt;b&gt;309&lt;/b&gt; (5738): 1242&amp;ndash;1245. doi:10.1126/science.1114057. PMID&amp;nbsp;16109880.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+streamlining+in+a+cosmopolitan+oceanic+bacterium&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Giovannoni+SJ%2C+et+al.&amp;amp;rft.au=Giovannoni+SJ%2C+et+al.&amp;amp;rft.date=2005&amp;amp;rft.volume=309&amp;amp;rft.issue=5738&amp;amp;rft.pages=1242%E2%80%931245&amp;amp;rft_id=info:doi/10.1126%2Fscience.1114057&amp;amp;rft_id=info:pmid/16109880&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Giovannoni2008-12&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Giovannoni SJ, et al. (2008). &amp;quot;The small genome of an abundant coastal ocean methylotroph&amp;quot;. &lt;i&gt;Environmental Microbiology&lt;/i&gt; &lt;b&gt;10&lt;/b&gt; (7): 1771&amp;ndash;1782. doi:10.1111/j.1462-2920.2008.01598.x. PMID&amp;nbsp;18393994.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+small+genome+of+an+abundant+coastal+ocean+methylotroph&amp;amp;rft.jtitle=Environmental+Microbiology&amp;amp;rft.aulast=Giovannoni+SJ%2C+et+al.&amp;amp;rft.au=Giovannoni+SJ%2C+et+al.&amp;amp;rft.date=2008&amp;amp;rft.volume=10&amp;amp;rft.issue=7&amp;amp;rft.pages=1771%E2%80%931782&amp;amp;rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01598.x&amp;amp;rft_id=info:pmid/18393994&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Nakabachi2006-13&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Nakabachi A, et al. (2006). &amp;quot;The 160-kilobase genome of the bacterial endosymbiont &lt;i&gt;Carsonella&lt;/i&gt;&amp;quot;. &lt;i&gt;Science&lt;/i&gt; &lt;b&gt;314&lt;/b&gt;: 267&amp;ndash;267. doi:10.1126/science.1134196.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+160-kilobase+genome+of+the+bacterial+endosymbiont+%27%27Carsonella%27%27&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Nakabachi+A%2C+et+al.&amp;amp;rft.au=Nakabachi+A%2C+et+al.&amp;amp;rft.date=2006&amp;amp;rft.volume=314&amp;amp;rft.pages=267%E2%80%93267&amp;amp;rft_id=info:doi/10.1126%2Fscience.1134196&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Wernegreen2005-14&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Wernegreen J (2005). &amp;quot;For better or worse: Genomic consequences of genomic mutualism and parasitism&amp;quot; (PDF). &lt;i&gt;Current Opinion in Genetics and Development&lt;/i&gt; &lt;b&gt;15&lt;/b&gt;: 1&amp;ndash;12&lt;span class=&quot;printonly&quot;&gt;. http://journals2005.pasteur.ac.ir/COGD/15(6).pdf#page=10&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=For+better+or+worse%3A+Genomic+consequences+of+genomic+mutualism+and+parasitism&amp;amp;rft.jtitle=Current+Opinion+in+Genetics+and+Development&amp;amp;rft.aulast=Wernegreen+J&amp;amp;rft.au=Wernegreen+J&amp;amp;rft.date=2005&amp;amp;rft.volume=15&amp;amp;rft.pages=1%E2%80%9312&amp;amp;rft_id=http%3A%2F%2Fjournals2005.pasteur.ac.ir%2FCOGD%2F15%286%29.pdf%23page%3D10&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Moran2004-15&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Moran NA, Plague GR (2004). &amp;quot;Genomic changes following host restriction in bacteria&amp;quot;. &lt;i&gt;Current Opinion in Genetics &amp;amp; Development&lt;/i&gt; &lt;b&gt;14&lt;/b&gt;: 627&amp;ndash;633. doi:10.1016/j.gde.2004.09.003.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genomic+changes+following+host+restriction+in+bacteria&amp;amp;rft.jtitle=Current+Opinion+in+Genetics+%26+Development&amp;amp;rft.aulast=Moran+NA%2C+Plague+GR&amp;amp;rft.au=Moran+NA%2C+Plague+GR&amp;amp;rft.date=2004&amp;amp;rft.volume=14&amp;amp;rft.pages=627%E2%80%93633&amp;amp;rft_id=info:doi/10.1016%2Fj.gde.2004.09.003&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;h3&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h3&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.chlamydiae.com/docs/Chlamydiales/ev_genomedegradn.asp&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Evolution of Chlamydiaceae&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Andersson JO Andersson SG (1999). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome degradation is an ongoing process in Rickettsia&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Molecular Biology and Evolution&lt;/i&gt; &lt;b&gt;16&lt;/b&gt; (9): 1178&amp;ndash;1191. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10486973&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10486973&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+degradation+is+an+ongoing+process+in+Rickettsia&amp;amp;rft.jtitle=Molecular+Biology+and+Evolution&amp;amp;rft.aulast=Andersson+JO+Andersson+SG&amp;amp;rft.au=Andersson+JO+Andersson+SG&amp;amp;rft.date=1999&amp;amp;rft.volume=16&amp;amp;rft.issue=9&amp;amp;rft.pages=1178%E2%80%931191&amp;amp;rft_id=info:pmid/10486973&amp;amp;rft_id=http%3A%2F%2Fmbe.oupjournals.org%2Fcgi%2Fcontent%2Fabstract%2F16%2F9%2F1178&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Animal Genome Size Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.rbgkew.org.uk/cval/homepage.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Plant DNA C-values Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.zbi.ee/fungal-genomesize/index.php&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Fungal Genome Size Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.cbs.dtu.dk/services/FD/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Fungal Database&lt;/font&gt;&lt;/a&gt; &amp;mdash; by CBS&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=File:Genome_Sizes.png&diff=3420 File:Genome Sizes.png 2011-01-16T07:25:07Z <p>WikiSysop: </p> <hr /> <div></div> WikiSysop http://Genomics.org/index.php?title=What_is_genome_size%3F&diff=3419 What is genome size? 2011-01-16T07:22:30Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;b&gt;Genome size&lt;/b&gt; is the total amount of DNA contained within one copy of a genome. It is typically measured in terms of mass in picograms (trillionths (10&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;&amp;minus;12&lt;/font&gt;&lt;/sup&gt;) of a gram, abbreviated pg) or less frequently in Daltons or as the total number of nucleotide base pairs typically in megabases (millions of base pairs, abbreviated Mb or Mbp).&lt;/p&gt;<br /> &lt;p&gt;One picogram equals 978 megabases.&lt;sup id=&quot;cite_ref-Dolezel2003_0-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[1]&lt;/font&gt;&lt;/sup&gt; In diploid organisms, genome size is used interchangeably with the term [[C-value]]. An organism's complexity is not directly proportional to its genome size; some single cell organisms have much more DNA than humans (see Junk DNA and C-value enigma).&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Origin_of_the_term&quot; class=&quot;mw-headline&quot;&gt;Origin of the term&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;The term &amp;quot;genome size&amp;quot; is often erroneously attributed to Hinegardner&lt;sup id=&quot;cite_ref-Hinegardner1976_1-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;, even in discussions dealing specifically with terminology in this area of research (e.g., Greilhuber, 2005&lt;sup id=&quot;cite_ref-Greilhuber2005_2-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[3]&lt;/font&gt;&lt;/sup&gt;). Notably, Hinegardner&lt;sup id=&quot;cite_ref-Hinegardner1976_1-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt; used the term only once: in the title. The term actually seems to have first appeared in 1968 when Hinegardner wondered, in the last paragraph of his article, whether &amp;quot;cellular DNA content does, in fact, reflect genome size&amp;quot;.&lt;sup id=&quot;cite_ref-Hinegardner1968_3-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[4]&lt;/font&gt;&lt;/sup&gt; In this context, &amp;quot;genome size&amp;quot; was being used in the sense of genotype to mean the number of genes. In a paper submitted only two months later (in February 1969), Wolf et al. (1969)&lt;sup id=&quot;cite_ref-Wolf1969_4-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[5]&lt;/font&gt;&lt;/sup&gt; used the term &amp;quot;genome size&amp;quot; throughout and in its present usage; therefore these authors should probably be credited with originating the term in its modern sense. By the early 1970s, &amp;quot;genome size&amp;quot; was in common usage with its present definition, probably as a result of its inclusion in Susumu Ohno's influential book &lt;i&gt;Evolution by Gene Duplication&lt;/i&gt;, published in 1970.&lt;sup id=&quot;cite_ref-Ohno1970_5-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[6]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Variation_in_genome_size_and_gene_content&quot; class=&quot;mw-headline&quot;&gt;Variation in genome size and gene content&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;thumb tright&quot;&gt;<br /> &lt;div style=&quot;width: 252px&quot; class=&quot;thumbinner&quot;&gt;&lt;img class=&quot;thumbimage&quot; alt=&quot;&quot; width=&quot;250&quot; height=&quot;177&quot; src=&quot;http://upload.wikimedia.org/wikipedia/en/thumb/8/80/Genome_Sizes.png/250px-Genome_Sizes.png&quot; /&gt;<br /> &lt;div class=&quot;thumbcaption&quot;&gt;<br /> &lt;div class=&quot;magnify&quot;&gt;&lt;img alt=&quot;&quot; width=&quot;15&quot; height=&quot;11&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png&quot; /&gt;&lt;/div&gt;<br /> Genome Sizes&lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;p&gt;The genome sizes of thousands of eukaryotes have been analyzed over the past 50 years, and these data are available in online databases for animals, plants, and fungi (see external links). Nuclear genome size is typically measured in eukaryotes using either densitometric measurements of Feulgen-stained nuclei (previously using specialized densitometers, now more commonly using computerized image analysis&lt;sup id=&quot;cite_ref-Hardie2002_6-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[7]&lt;/font&gt;&lt;/sup&gt;) or flow cytometry. In prokaryotes, pulsed-field gel electrophoresis and complete genome sequencing are the predominant methods of genome size determination. Nuclear genome sizes are well known to vary enormously among eukaryotic species. In animals they range more than 3,300-fold, and in land plants they differ by a factor of about 1,000.&lt;sup id=&quot;cite_ref-Bennett2005_7-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[8]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Gregory2005_8-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[9]&lt;/font&gt;&lt;/sup&gt; Protist genomes have been reported to vary more than 300,000-fold in size, but the high end of this range (&lt;i&gt;Amoeba&lt;/i&gt;) has been called into question. In eukaryotes (but not prokaryotes), variation in genome size is not proportional to the number of genes, an observation that was deemed wholly counterintuitive before the discovery of non-coding DNA and which became known as the C-value paradox as a result. However, although there is no longer any paradoxical aspect to the discrepancy between genome size and gene number, this term remains in common usage. For reasons of conceptual clarification, the various puzzles that remain with regard to genome size variation instead have been suggested by one author to more accurately comprise a puzzle or an enigma (the C-value enigma). Genome size correlates with a range of features at the cell and organism levels, including cell size, cell division rate, and, depending on the taxon, body size, metabolic rate, developmental rate, organ complexity, geographical distribution, and/or extinction risk (for recent reviews, see Bennett and Leitch 2005&lt;sup id=&quot;cite_ref-Bennett2005_7-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[8]&lt;/font&gt;&lt;/sup&gt;; Gregory 2005&lt;sup id=&quot;cite_ref-Gregory2005_8-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[9]&lt;/font&gt;&lt;/sup&gt;). Based on completely sequenced genome data currently (as of April 2009) available, log-transformed gene number forms a linear correlation with log-transformed genome size in bacteria, archea, viruses, and organelles combined whereas a nonlinear (semi-natural log) correlation in eukaryotes (Hou and Lin 2009 &lt;sup id=&quot;cite_ref-Hou2009_9-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[10]&lt;/font&gt;&lt;/sup&gt;). The nonlinear correlation for eukaryotes, although claim of its existence contrasts the previous view that no correlation exists for this group of organisms, reflects disproportinately fast increasing noncoding DNA in increasingly large eukaryotic genomes. Although sequenced genome data are practically biased toward small genomes, which may compromise the accuracy of the empirically derived correlation, and the ultimate proof of the correlation remains to be obtained by sequencing some of the largest eukaryotic genomes, current data do not seem to rule out a correlation.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Genome_reduction&quot; class=&quot;mw-headline&quot;&gt;Genome reduction&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;b&gt;Genome reduction&lt;/b&gt;, also known as &lt;b&gt;Genome degradation&lt;/b&gt;, is the process by which a genome shrinks relative to its ancestor. Genomes fluctuate in size regularly, especially in Bacteria, but in some situations a genome has drastically lost content during some period.&lt;/p&gt;<br /> &lt;p&gt;The most evolutionary significant cases of genome reduction may be the eukaryotic organelles that are derived from bacteria: the mitochondrion and plastid. These organelles are descended from endosymbionts, which can only survive within the host cell and which the host cell likewise needs for survival. Many mitochondria have less than 20 genes in their entire genome, whereas a free-living bacterium generally has at least 1000 genes. Many genes have been transferred to the host nucleus, while others have simply been lost and their function replaced by host processes.&lt;/p&gt;<br /> &lt;p&gt;Other bacteria have become endosymbionts or obligate intracellular pathogens and experienced extensive genome reduction as a result. This process seems to be dominated by genetic drift resulting from small population size, low recombination rates, and high mutation rates, as opposed to selection for smaller genomes.&lt;/p&gt;<br /> &lt;p&gt;Some free-living marine bacterioplanktons also shows signs of genome reduction, which are hypothesized to be driven by natural selection.&lt;sup id=&quot;cite_ref-Dufresne2005_10-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[11]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Giovannoni2005_11-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[12]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Giovannoni2008_12-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[13]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;h3&gt;&lt;span id=&quot;Genome_reduction_in_obligate_endosymbiotic_species&quot; class=&quot;mw-headline&quot;&gt;Genome reduction in obligate endosymbiotic species&lt;/span&gt;&lt;/h3&gt;<br /> &lt;p&gt;&lt;b&gt;Obligate endosymbiotic species&lt;/b&gt; are characterized by a complete inability to survive external to their &lt;b&gt;host&lt;/b&gt; environment. These species have become a considerable threat to human health, as they are often highly capable of evading human immune systems and manipulating the host environment to acquire nutrients. A common explanation for these keen manipulative abilities is the &lt;b&gt;compact&lt;/b&gt; and &lt;b&gt;efficient&lt;/b&gt; genomic structure consistently found in obligate endosymbionts. This compact genome structure is the result of massive losses of extraneous DNA - an occurrence that is exclusively associated with the loss of a free-living stage. In fact, as much as 90% of the genetic material can be lost when a species makes the evolutionary transition from a &lt;b&gt;free-living&lt;/b&gt; to &lt;b&gt;obligate intracellular&lt;/b&gt; lifestyle. Common examples of species with reduced genomes include: &lt;i&gt;Buchnera aphidicola&lt;/i&gt;, &lt;i&gt;Rickettsia prowazekii&lt;/i&gt; and &lt;i&gt;Mycobacterium leprae&lt;/i&gt;. One obligate endosymbiont of psyllid, &lt;i&gt;Candidatus Carsonella ruddii&lt;/i&gt;, has the smallest genome currently known among cellular organisms at 160kb.&lt;sup id=&quot;cite_ref-Nakabachi2006_13-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[14]&lt;/font&gt;&lt;/sup&gt; It is important to note, however, that some obligate intracellular species have positive fitness effects on their hosts. (See also mutualists and parasites.)&lt;/p&gt;<br /> &lt;p&gt;The &lt;b&gt;reductive evolution model&lt;/b&gt; has been proposed as an effort to define the genomic commonalities seen in all obligate endosymbionts.&lt;sup id=&quot;cite_ref-Wernegreen2005_14-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[15]&lt;/font&gt;&lt;/sup&gt; This model illustrates four general features of reduced genomes and obligate intracellular species:&lt;/p&gt;<br /> &lt;ol&gt;<br /> &lt;li&gt;&amp;lsquo;genome streamlining&amp;rsquo; resulting from relaxed selection on genes that are superfluous in the intracellular environment;&lt;/li&gt;<br /> &lt;li&gt;a bias towards deletions (rather than insertions), which heavily affects genes that have been disrupted by accumulation of mutations (pseudogenes)&lt;sup id=&quot;cite_ref-Moran2004_15-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[16]&lt;/font&gt;&lt;/sup&gt;;&lt;/li&gt;<br /> &lt;li&gt;very little or no capability for acquiring new DNA; and&lt;/li&gt;<br /> &lt;li&gt;considerable reduction of effective population size in endosymbiotic populations, particularly in species that rely on vertical transmission.&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;p&gt;Based on this model, it is clear that endosymbionts face different adaptive challenges than free-living species.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Conversion_from_picograms_.28pg.29_to_base_pairs_.28bp.29&quot; class=&quot;mw-headline&quot;&gt;Conversion from picograms (pg) to base pairs (bp)&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;rellink relarticle mainarticle&quot;&gt;Main article: C-value&lt;/div&gt;<br /> &lt;dl&gt;&lt;dd&gt;&lt;/dd&gt;&lt;/dl&gt;<br /> &lt;p&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;[[File:Pico gram to basepair eq.png]]&lt;/p&gt;<br /> &lt;p&gt;or simply:&lt;/p&gt;<br /> &lt;dl&gt;&lt;dd&gt;&lt;span class=&quot;texhtml&quot;&gt;&lt;font face=&quot;바탕&quot;&gt;1pg = 978Mb&lt;/font&gt;&lt;/span&gt;&lt;sup id=&quot;cite_ref-Dolezel2003_0-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[1]&lt;/font&gt;&lt;/sup&gt;&lt;/dd&gt;&lt;/dl&gt;<br /> &lt;h2&gt;&lt;span id=&quot;See_also&quot; class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;Comparison of different genome sizes&lt;/li&gt;<br /> &lt;li&gt;Animal Genome Size Database&lt;/li&gt;<br /> &lt;li&gt;Cell nucleus&lt;/li&gt;<br /> &lt;li&gt;Comparative genomics&lt;/li&gt;<br /> &lt;li&gt;C-value&lt;/li&gt;<br /> &lt;li&gt;C-value enigma&lt;/li&gt;<br /> &lt;li&gt;Genome&lt;/li&gt;<br /> &lt;li&gt;Human genome&lt;/li&gt;<br /> &lt;li&gt;Junk DNA&lt;/li&gt;<br /> &lt;li&gt;Noncoding DNA&lt;/li&gt;<br /> &lt;li&gt;Plant DNA C-values Database&lt;/li&gt;<br /> &lt;li&gt;Selfish DNA&lt;/li&gt;<br /> &lt;li&gt;Transposable elements&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div style=&quot;column-count: 2; -moz-column-count: 2; -webkit-column-count: 2&quot; class=&quot;references-small references-column-count references-column-count-2&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;cite_note-Dolezel2003-0&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation Journal&quot;&gt;Dolezel J, Barto&amp;scaron; J, Voglmayr H, Greilhuber J (2003). &amp;quot;Nuclear DNA content and genome size of trout and human&amp;quot;. &lt;i&gt;Cytometry A&lt;/i&gt; &lt;b&gt;51&lt;/b&gt; (2): 127&amp;ndash;128. doi:10.1002/cyto.a.10013. PMID&amp;nbsp;12541287.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Nuclear+DNA+content+and+genome+size+of+trout+and+human&amp;amp;rft.jtitle=Cytometry+A&amp;amp;rft.aulast=Dolezel+J%2C+Barto%C5%A1+J%2C+Voglmayr+H%2C+Greilhuber+J&amp;amp;rft.au=Dolezel+J%2C+Barto%C5%A1+J%2C+Voglmayr+H%2C+Greilhuber+J&amp;amp;rft.date=2003&amp;amp;rft.volume=51&amp;amp;rft.issue=2&amp;amp;rft.pages=127%E2%80%93128&amp;amp;rft_id=info:doi/10.1002%2Fcyto.a.10013&amp;amp;rft_id=info:pmid/12541287&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hinegardner1976-1&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Hinegardner R (1976). &amp;quot;Evolution of genome size&amp;quot;. In F.J. Ayala. &lt;i&gt;Molecular Evolution&lt;/i&gt;. Sinauer Associates, Inc., Sunderland. pp.&amp;nbsp;179&amp;ndash;199.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Evolution+of+genome+size&amp;amp;rft.atitle=Molecular+Evolution&amp;amp;rft.aulast=Hinegardner+R&amp;amp;rft.au=Hinegardner+R&amp;amp;rft.date=1976&amp;amp;rft.pages=pp.%26nbsp%3B179%E2%80%93199&amp;amp;rft.pub=Sinauer+Associates%2C+Inc.%2C+Sunderland&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Greilhuber2005-2&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Greilhuber J, Doležel J, Lys&amp;aacute;k M, Bennett MD (2005). &amp;quot;The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents&amp;quot;. &lt;i&gt;Annals of Botany&lt;/i&gt; &lt;b&gt;95&lt;/b&gt; (1): 255&amp;ndash;260. doi:10.1093/aob/mci019. PMID&amp;nbsp;15596473.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+origin%2C+evolution+and+proposed+stabilization+of+the+terms+%27genome+size%27+and+%27C-value%27+to+describe+nuclear+DNA+contents&amp;amp;rft.jtitle=Annals+of+Botany&amp;amp;rft.aulast=Greilhuber+J%2C+Dole%C5%BEel+J%2C+Lys%C3%A1k+M%2C+Bennett+MD&amp;amp;rft.au=Greilhuber+J%2C+Dole%C5%BEel+J%2C+Lys%C3%A1k+M%2C+Bennett+MD&amp;amp;rft.date=2005&amp;amp;rft.volume=95&amp;amp;rft.issue=1&amp;amp;rft.pages=255%E2%80%93260&amp;amp;rft_id=info:doi/10.1093%2Faob%2Fmci019&amp;amp;rft_id=info:pmid/15596473&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hinegardner1968-3&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hinegardner R (1968). &amp;quot;Evolution of cellular DNA content in teleost fishes&amp;quot;. &lt;i&gt;American Naturalist&lt;/i&gt; &lt;b&gt;102&lt;/b&gt;: 517&amp;ndash;523. doi:10.1086/282564.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Evolution+of+cellular+DNA+content+in+teleost+fishes&amp;amp;rft.jtitle=American+Naturalist&amp;amp;rft.aulast=Hinegardner+R&amp;amp;rft.au=Hinegardner+R&amp;amp;rft.date=1968&amp;amp;rft.volume=102&amp;amp;rft.pages=517%E2%80%93523&amp;amp;rft_id=info:doi/10.1086%2F282564&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Wolf1969-4&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Wolf U, Ritter H, Atkin NB, Ohno S (1969). &amp;quot;Polyploidization in the fish family Cyprinidae, Order Cypriniformes. I. DNA-content and chromosome sets in various species of Cyprinidae&amp;quot;. &lt;i&gt;Humangenetik&lt;/i&gt; &lt;b&gt;7&lt;/b&gt; (3): 240&amp;ndash;244. PMID&amp;nbsp;5800705.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Polyploidization+in+the+fish+family+Cyprinidae%2C+Order+Cypriniformes.+I.+DNA-content+and+chromosome+sets+in+various+species+of+Cyprinidae&amp;amp;rft.jtitle=Humangenetik&amp;amp;rft.aulast=Wolf+U%2C+Ritter+H%2C+Atkin+NB%2C+Ohno+S&amp;amp;rft.au=Wolf+U%2C+Ritter+H%2C+Atkin+NB%2C+Ohno+S&amp;amp;rft.date=1969&amp;amp;rft.volume=7&amp;amp;rft.issue=3&amp;amp;rft.pages=240%E2%80%93244&amp;amp;rft_id=info:pmid/5800705&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Ohno1970-5&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation book&quot;&gt;Ohno S (1970). &lt;i&gt;Evolution by Gene Duplication&lt;/i&gt;. New York: Springer-Verlag. ISBN&amp;nbsp;0045750157.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Evolution+by+Gene+Duplication&amp;amp;rft.aulast=Ohno+S&amp;amp;rft.au=Ohno+S&amp;amp;rft.date=1970&amp;amp;rft.place=New+York&amp;amp;rft.pub=Springer-Verlag&amp;amp;rft.isbn=0045750157&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hardie2002-6&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hardie DC, Gregory TR, Hebert PDN (2002). &amp;quot;From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry&amp;quot;. &lt;i&gt;Journal of Histochemistry and Cytochemistry&lt;/i&gt; &lt;b&gt;50&lt;/b&gt; (6): 735&amp;ndash;749. PMID&amp;nbsp;12019291.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=From+pixels+to+picograms%3A+a+beginners%27+guide+to+genome+quantification+by+Feulgen+image+analysis+densitometry&amp;amp;rft.jtitle=Journal+of+Histochemistry+and+Cytochemistry&amp;amp;rft.aulast=Hardie+DC%2C+Gregory+TR%2C+Hebert+PDN&amp;amp;rft.au=Hardie+DC%2C+Gregory+TR%2C+Hebert+PDN&amp;amp;rft.date=2002&amp;amp;rft.volume=50&amp;amp;rft.issue=6&amp;amp;rft.pages=735%E2%80%93749&amp;amp;rft_id=info:pmid/12019291&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Bennett2005-7&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Bennett MD, Leitch IJ (2005). &amp;quot;Genome size evolution in plants&amp;quot;. In T.R. Gregory. &lt;i&gt;The Evolution of the Genome&lt;/i&gt;. San Diego: Elsevier. pp.&amp;nbsp;89&amp;ndash;162.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Genome+size+evolution+in+plants&amp;amp;rft.atitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Bennett+MD%2C+Leitch+IJ&amp;amp;rft.au=Bennett+MD%2C+Leitch+IJ&amp;amp;rft.date=2005&amp;amp;rft.pages=pp.%26nbsp%3B89%E2%80%93162&amp;amp;rft.place=San+Diego&amp;amp;rft.pub=Elsevier&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Gregory2005-8&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Gregory TR (2005). &amp;quot;Genome size evolution in animals&amp;quot;. In T.R. Gregory. &lt;i&gt;The Evolution of the Genome&lt;/i&gt;. San Diego: Elsevier. pp.&amp;nbsp;3&amp;ndash;87.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Genome+size+evolution+in+animals&amp;amp;rft.atitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Gregory+TR&amp;amp;rft.au=Gregory+TR&amp;amp;rft.date=2005&amp;amp;rft.pages=pp.%26nbsp%3B3%E2%80%9387&amp;amp;rft.place=San+Diego&amp;amp;rft.pub=Elsevier&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hou2009-9&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hou Y, Lin S (2009). &amp;quot;Distinct Gene Number- Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes&amp;quot;. &lt;i&gt;PLoS ONE&lt;/i&gt; &lt;b&gt;4&lt;/b&gt; (9): e6978.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Distinct+Gene+Number-+Genome+Size+Relationships+for+Eukaryotes+and+Non-Eukaryotes%3A+Gene+Content+Estimation+for+Dinoflagellate+Genomes&amp;amp;rft.jtitle=PLoS+ONE&amp;amp;rft.aulast=Hou+Y%2C+Lin+S&amp;amp;rft.au=Hou+Y%2C+Lin+S&amp;amp;rft.date=2009&amp;amp;rft.volume=4&amp;amp;rft.issue=9&amp;amp;rft.pages=e6978&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Dufresne2005-10&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Dufresne A, Garczarek L, Partensky F (2005). &amp;quot;Accelerated evolution associated with genome reduction in a free-living prokaryote&amp;quot;. &lt;i&gt;Genome Biol&lt;/i&gt; &lt;b&gt;6&lt;/b&gt;: R14.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Accelerated+evolution+associated+with+genome+reduction+in+a+free-living+prokaryote&amp;amp;rft.jtitle=Genome+Biol&amp;amp;rft.aulast=Dufresne+A%2C+Garczarek+L%2C+Partensky+F&amp;amp;rft.au=Dufresne+A%2C+Garczarek+L%2C+Partensky+F&amp;amp;rft.date=2005&amp;amp;rft.volume=6&amp;amp;rft.pages=R14&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Giovannoni2005-11&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Giovannoni SJ, et al. (2005). &amp;quot;Genome streamlining in a cosmopolitan oceanic bacterium&amp;quot;. &lt;i&gt;Science&lt;/i&gt; &lt;b&gt;309&lt;/b&gt; (5738): 1242&amp;ndash;1245. doi:10.1126/science.1114057. PMID&amp;nbsp;16109880.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+streamlining+in+a+cosmopolitan+oceanic+bacterium&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Giovannoni+SJ%2C+et+al.&amp;amp;rft.au=Giovannoni+SJ%2C+et+al.&amp;amp;rft.date=2005&amp;amp;rft.volume=309&amp;amp;rft.issue=5738&amp;amp;rft.pages=1242%E2%80%931245&amp;amp;rft_id=info:doi/10.1126%2Fscience.1114057&amp;amp;rft_id=info:pmid/16109880&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Giovannoni2008-12&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Giovannoni SJ, et al. (2008). &amp;quot;The small genome of an abundant coastal ocean methylotroph&amp;quot;. &lt;i&gt;Environmental Microbiology&lt;/i&gt; &lt;b&gt;10&lt;/b&gt; (7): 1771&amp;ndash;1782. doi:10.1111/j.1462-2920.2008.01598.x. PMID&amp;nbsp;18393994.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+small+genome+of+an+abundant+coastal+ocean+methylotroph&amp;amp;rft.jtitle=Environmental+Microbiology&amp;amp;rft.aulast=Giovannoni+SJ%2C+et+al.&amp;amp;rft.au=Giovannoni+SJ%2C+et+al.&amp;amp;rft.date=2008&amp;amp;rft.volume=10&amp;amp;rft.issue=7&amp;amp;rft.pages=1771%E2%80%931782&amp;amp;rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01598.x&amp;amp;rft_id=info:pmid/18393994&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Nakabachi2006-13&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Nakabachi A, et al. (2006). &amp;quot;The 160-kilobase genome of the bacterial endosymbiont &lt;i&gt;Carsonella&lt;/i&gt;&amp;quot;. &lt;i&gt;Science&lt;/i&gt; &lt;b&gt;314&lt;/b&gt;: 267&amp;ndash;267. doi:10.1126/science.1134196.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+160-kilobase+genome+of+the+bacterial+endosymbiont+%27%27Carsonella%27%27&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Nakabachi+A%2C+et+al.&amp;amp;rft.au=Nakabachi+A%2C+et+al.&amp;amp;rft.date=2006&amp;amp;rft.volume=314&amp;amp;rft.pages=267%E2%80%93267&amp;amp;rft_id=info:doi/10.1126%2Fscience.1134196&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Wernegreen2005-14&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Wernegreen J (2005). &amp;quot;For better or worse: Genomic consequences of genomic mutualism and parasitism&amp;quot; (PDF). &lt;i&gt;Current Opinion in Genetics and Development&lt;/i&gt; &lt;b&gt;15&lt;/b&gt;: 1&amp;ndash;12&lt;span class=&quot;printonly&quot;&gt;. http://journals2005.pasteur.ac.ir/COGD/15(6).pdf#page=10&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=For+better+or+worse%3A+Genomic+consequences+of+genomic+mutualism+and+parasitism&amp;amp;rft.jtitle=Current+Opinion+in+Genetics+and+Development&amp;amp;rft.aulast=Wernegreen+J&amp;amp;rft.au=Wernegreen+J&amp;amp;rft.date=2005&amp;amp;rft.volume=15&amp;amp;rft.pages=1%E2%80%9312&amp;amp;rft_id=http%3A%2F%2Fjournals2005.pasteur.ac.ir%2FCOGD%2F15%286%29.pdf%23page%3D10&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Moran2004-15&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Moran NA, Plague GR (2004). &amp;quot;Genomic changes following host restriction in bacteria&amp;quot;. &lt;i&gt;Current Opinion in Genetics &amp;amp; Development&lt;/i&gt; &lt;b&gt;14&lt;/b&gt;: 627&amp;ndash;633. doi:10.1016/j.gde.2004.09.003.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genomic+changes+following+host+restriction+in+bacteria&amp;amp;rft.jtitle=Current+Opinion+in+Genetics+%26+Development&amp;amp;rft.aulast=Moran+NA%2C+Plague+GR&amp;amp;rft.au=Moran+NA%2C+Plague+GR&amp;amp;rft.date=2004&amp;amp;rft.volume=14&amp;amp;rft.pages=627%E2%80%93633&amp;amp;rft_id=info:doi/10.1016%2Fj.gde.2004.09.003&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;h3&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h3&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.chlamydiae.com/docs/Chlamydiales/ev_genomedegradn.asp&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Evolution of Chlamydiaceae&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Andersson JO Andersson SG (1999). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome degradation is an ongoing process in Rickettsia&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Molecular Biology and Evolution&lt;/i&gt; &lt;b&gt;16&lt;/b&gt; (9): 1178&amp;ndash;1191. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10486973&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10486973&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+degradation+is+an+ongoing+process+in+Rickettsia&amp;amp;rft.jtitle=Molecular+Biology+and+Evolution&amp;amp;rft.aulast=Andersson+JO+Andersson+SG&amp;amp;rft.au=Andersson+JO+Andersson+SG&amp;amp;rft.date=1999&amp;amp;rft.volume=16&amp;amp;rft.issue=9&amp;amp;rft.pages=1178%E2%80%931191&amp;amp;rft_id=info:pmid/10486973&amp;amp;rft_id=http%3A%2F%2Fmbe.oupjournals.org%2Fcgi%2Fcontent%2Fabstract%2F16%2F9%2F1178&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Animal Genome Size Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.rbgkew.org.uk/cval/homepage.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Plant DNA C-values Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.zbi.ee/fungal-genomesize/index.php&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Fungal Genome Size Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.cbs.dtu.dk/services/FD/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Fungal Database&lt;/font&gt;&lt;/a&gt; &amp;mdash; by CBS&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=File:Pico_gram_to_basepair_eq.png&diff=3418 File:Pico gram to basepair eq.png 2011-01-16T07:22:03Z <p>WikiSysop: </p> <hr /> <div></div> WikiSysop http://Genomics.org/index.php?title=What_is_genome_size%3F&diff=3417 What is genome size? 2011-01-16T07:21:44Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;b&gt;Genome size&lt;/b&gt; is the total amount of DNA contained within one copy of a genome. It is typically measured in terms of mass in picograms (trillionths (10&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;&amp;minus;12&lt;/font&gt;&lt;/sup&gt;) of a gram, abbreviated pg) or less frequently in Daltons or as the total number of nucleotide base pairs typically in megabases (millions of base pairs, abbreviated Mb or Mbp).&lt;/p&gt;<br /> &lt;p&gt;One picogram equals 978 megabases.&lt;sup id=&quot;cite_ref-Dolezel2003_0-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[1]&lt;/font&gt;&lt;/sup&gt; In diploid organisms, genome size is used interchangeably with the term [[C-value]]. An organism's complexity is not directly proportional to its genome size; some single cell organisms have much more DNA than humans (see Junk DNA and C-value enigma).&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Origin_of_the_term&quot; class=&quot;mw-headline&quot;&gt;Origin of the term&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;The term &amp;quot;genome size&amp;quot; is often erroneously attributed to Hinegardner&lt;sup id=&quot;cite_ref-Hinegardner1976_1-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt;, even in discussions dealing specifically with terminology in this area of research (e.g., Greilhuber, 2005&lt;sup id=&quot;cite_ref-Greilhuber2005_2-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[3]&lt;/font&gt;&lt;/sup&gt;). Notably, Hinegardner&lt;sup id=&quot;cite_ref-Hinegardner1976_1-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt; used the term only once: in the title. The term actually seems to have first appeared in 1968 when Hinegardner wondered, in the last paragraph of his article, whether &amp;quot;cellular DNA content does, in fact, reflect genome size&amp;quot;.&lt;sup id=&quot;cite_ref-Hinegardner1968_3-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[4]&lt;/font&gt;&lt;/sup&gt; In this context, &amp;quot;genome size&amp;quot; was being used in the sense of genotype to mean the number of genes. In a paper submitted only two months later (in February 1969), Wolf et al. (1969)&lt;sup id=&quot;cite_ref-Wolf1969_4-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[5]&lt;/font&gt;&lt;/sup&gt; used the term &amp;quot;genome size&amp;quot; throughout and in its present usage; therefore these authors should probably be credited with originating the term in its modern sense. By the early 1970s, &amp;quot;genome size&amp;quot; was in common usage with its present definition, probably as a result of its inclusion in Susumu Ohno's influential book &lt;i&gt;Evolution by Gene Duplication&lt;/i&gt;, published in 1970.&lt;sup id=&quot;cite_ref-Ohno1970_5-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[6]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Variation_in_genome_size_and_gene_content&quot; class=&quot;mw-headline&quot;&gt;Variation in genome size and gene content&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;thumb tright&quot;&gt;<br /> &lt;div style=&quot;width: 252px&quot; class=&quot;thumbinner&quot;&gt;&lt;img class=&quot;thumbimage&quot; alt=&quot;&quot; width=&quot;250&quot; height=&quot;177&quot; src=&quot;http://upload.wikimedia.org/wikipedia/en/thumb/8/80/Genome_Sizes.png/250px-Genome_Sizes.png&quot; /&gt;<br /> &lt;div class=&quot;thumbcaption&quot;&gt;<br /> &lt;div class=&quot;magnify&quot;&gt;&lt;img alt=&quot;&quot; width=&quot;15&quot; height=&quot;11&quot; src=&quot;http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png&quot; /&gt;&lt;/div&gt;<br /> Genome Sizes&lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;p&gt;The genome sizes of thousands of eukaryotes have been analyzed over the past 50 years, and these data are available in online databases for animals, plants, and fungi (see external links). Nuclear genome size is typically measured in eukaryotes using either densitometric measurements of Feulgen-stained nuclei (previously using specialized densitometers, now more commonly using computerized image analysis&lt;sup id=&quot;cite_ref-Hardie2002_6-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[7]&lt;/font&gt;&lt;/sup&gt;) or flow cytometry. In prokaryotes, pulsed-field gel electrophoresis and complete genome sequencing are the predominant methods of genome size determination. Nuclear genome sizes are well known to vary enormously among eukaryotic species. In animals they range more than 3,300-fold, and in land plants they differ by a factor of about 1,000.&lt;sup id=&quot;cite_ref-Bennett2005_7-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[8]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Gregory2005_8-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[9]&lt;/font&gt;&lt;/sup&gt; Protist genomes have been reported to vary more than 300,000-fold in size, but the high end of this range (&lt;i&gt;Amoeba&lt;/i&gt;) has been called into question. In eukaryotes (but not prokaryotes), variation in genome size is not proportional to the number of genes, an observation that was deemed wholly counterintuitive before the discovery of non-coding DNA and which became known as the C-value paradox as a result. However, although there is no longer any paradoxical aspect to the discrepancy between genome size and gene number, this term remains in common usage. For reasons of conceptual clarification, the various puzzles that remain with regard to genome size variation instead have been suggested by one author to more accurately comprise a puzzle or an enigma (the C-value enigma). Genome size correlates with a range of features at the cell and organism levels, including cell size, cell division rate, and, depending on the taxon, body size, metabolic rate, developmental rate, organ complexity, geographical distribution, and/or extinction risk (for recent reviews, see Bennett and Leitch 2005&lt;sup id=&quot;cite_ref-Bennett2005_7-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[8]&lt;/font&gt;&lt;/sup&gt;; Gregory 2005&lt;sup id=&quot;cite_ref-Gregory2005_8-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[9]&lt;/font&gt;&lt;/sup&gt;). Based on completely sequenced genome data currently (as of April 2009) available, log-transformed gene number forms a linear correlation with log-transformed genome size in bacteria, archea, viruses, and organelles combined whereas a nonlinear (semi-natural log) correlation in eukaryotes (Hou and Lin 2009 &lt;sup id=&quot;cite_ref-Hou2009_9-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[10]&lt;/font&gt;&lt;/sup&gt;). The nonlinear correlation for eukaryotes, although claim of its existence contrasts the previous view that no correlation exists for this group of organisms, reflects disproportinately fast increasing noncoding DNA in increasingly large eukaryotic genomes. Although sequenced genome data are practically biased toward small genomes, which may compromise the accuracy of the empirically derived correlation, and the ultimate proof of the correlation remains to be obtained by sequencing some of the largest eukaryotic genomes, current data do not seem to rule out a correlation.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Genome_reduction&quot; class=&quot;mw-headline&quot;&gt;Genome reduction&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;b&gt;Genome reduction&lt;/b&gt;, also known as &lt;b&gt;Genome degradation&lt;/b&gt;, is the process by which a genome shrinks relative to its ancestor. Genomes fluctuate in size regularly, especially in Bacteria, but in some situations a genome has drastically lost content during some period.&lt;/p&gt;<br /> &lt;p&gt;The most evolutionary significant cases of genome reduction may be the eukaryotic organelles that are derived from bacteria: the mitochondrion and plastid. These organelles are descended from endosymbionts, which can only survive within the host cell and which the host cell likewise needs for survival. Many mitochondria have less than 20 genes in their entire genome, whereas a free-living bacterium generally has at least 1000 genes. Many genes have been transferred to the host nucleus, while others have simply been lost and their function replaced by host processes.&lt;/p&gt;<br /> &lt;p&gt;Other bacteria have become endosymbionts or obligate intracellular pathogens and experienced extensive genome reduction as a result. This process seems to be dominated by genetic drift resulting from small population size, low recombination rates, and high mutation rates, as opposed to selection for smaller genomes.&lt;/p&gt;<br /> &lt;p&gt;Some free-living marine bacterioplanktons also shows signs of genome reduction, which are hypothesized to be driven by natural selection.&lt;sup id=&quot;cite_ref-Dufresne2005_10-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[11]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Giovannoni2005_11-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[12]&lt;/font&gt;&lt;/sup&gt;&lt;sup id=&quot;cite_ref-Giovannoni2008_12-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[13]&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;h3&gt;&lt;span id=&quot;Genome_reduction_in_obligate_endosymbiotic_species&quot; class=&quot;mw-headline&quot;&gt;Genome reduction in obligate endosymbiotic species&lt;/span&gt;&lt;/h3&gt;<br /> &lt;p&gt;&lt;b&gt;Obligate endosymbiotic species&lt;/b&gt; are characterized by a complete inability to survive external to their &lt;b&gt;host&lt;/b&gt; environment. These species have become a considerable threat to human health, as they are often highly capable of evading human immune systems and manipulating the host environment to acquire nutrients. A common explanation for these keen manipulative abilities is the &lt;b&gt;compact&lt;/b&gt; and &lt;b&gt;efficient&lt;/b&gt; genomic structure consistently found in obligate endosymbionts. This compact genome structure is the result of massive losses of extraneous DNA - an occurrence that is exclusively associated with the loss of a free-living stage. In fact, as much as 90% of the genetic material can be lost when a species makes the evolutionary transition from a &lt;b&gt;free-living&lt;/b&gt; to &lt;b&gt;obligate intracellular&lt;/b&gt; lifestyle. Common examples of species with reduced genomes include: &lt;i&gt;Buchnera aphidicola&lt;/i&gt;, &lt;i&gt;Rickettsia prowazekii&lt;/i&gt; and &lt;i&gt;Mycobacterium leprae&lt;/i&gt;. One obligate endosymbiont of psyllid, &lt;i&gt;Candidatus Carsonella ruddii&lt;/i&gt;, has the smallest genome currently known among cellular organisms at 160kb.&lt;sup id=&quot;cite_ref-Nakabachi2006_13-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[14]&lt;/font&gt;&lt;/sup&gt; It is important to note, however, that some obligate intracellular species have positive fitness effects on their hosts. (See also mutualists and parasites.)&lt;/p&gt;<br /> &lt;p&gt;The &lt;b&gt;reductive evolution model&lt;/b&gt; has been proposed as an effort to define the genomic commonalities seen in all obligate endosymbionts.&lt;sup id=&quot;cite_ref-Wernegreen2005_14-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[15]&lt;/font&gt;&lt;/sup&gt; This model illustrates four general features of reduced genomes and obligate intracellular species:&lt;/p&gt;<br /> &lt;ol&gt;<br /> &lt;li&gt;&amp;lsquo;genome streamlining&amp;rsquo; resulting from relaxed selection on genes that are superfluous in the intracellular environment;&lt;/li&gt;<br /> &lt;li&gt;a bias towards deletions (rather than insertions), which heavily affects genes that have been disrupted by accumulation of mutations (pseudogenes)&lt;sup id=&quot;cite_ref-Moran2004_15-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[16]&lt;/font&gt;&lt;/sup&gt;;&lt;/li&gt;<br /> &lt;li&gt;very little or no capability for acquiring new DNA; and&lt;/li&gt;<br /> &lt;li&gt;considerable reduction of effective population size in endosymbiotic populations, particularly in species that rely on vertical transmission.&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;p&gt;Based on this model, it is clear that endosymbionts face different adaptive challenges than free-living species.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Conversion_from_picograms_.28pg.29_to_base_pairs_.28bp.29&quot; class=&quot;mw-headline&quot;&gt;Conversion from picograms (pg) to base pairs (bp)&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;rellink relarticle mainarticle&quot;&gt;Main article: C-value&lt;/div&gt;<br /> &lt;dl&gt;&lt;dd&gt;&lt;/dd&gt;&lt;/dl&gt;<br /> &lt;p&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;or simply:&lt;/p&gt;<br /> &lt;dl&gt;&lt;dd&gt;&lt;span class=&quot;texhtml&quot;&gt;&lt;font face=&quot;바탕&quot;&gt;1pg = 978Mb&lt;/font&gt;&lt;/span&gt;&lt;sup id=&quot;cite_ref-Dolezel2003_0-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[1]&lt;/font&gt;&lt;/sup&gt;&lt;/dd&gt;&lt;/dl&gt;<br /> &lt;h2&gt;&lt;span id=&quot;See_also&quot; class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;Comparison of different genome sizes&lt;/li&gt;<br /> &lt;li&gt;Animal Genome Size Database&lt;/li&gt;<br /> &lt;li&gt;Cell nucleus&lt;/li&gt;<br /> &lt;li&gt;Comparative genomics&lt;/li&gt;<br /> &lt;li&gt;C-value&lt;/li&gt;<br /> &lt;li&gt;C-value enigma&lt;/li&gt;<br /> &lt;li&gt;Genome&lt;/li&gt;<br /> &lt;li&gt;Human genome&lt;/li&gt;<br /> &lt;li&gt;Junk DNA&lt;/li&gt;<br /> &lt;li&gt;Noncoding DNA&lt;/li&gt;<br /> &lt;li&gt;Plant DNA C-values Database&lt;/li&gt;<br /> &lt;li&gt;Selfish DNA&lt;/li&gt;<br /> &lt;li&gt;Transposable elements&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div style=&quot;column-count: 2; -moz-column-count: 2; -webkit-column-count: 2&quot; class=&quot;references-small references-column-count references-column-count-2&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;cite_note-Dolezel2003-0&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation Journal&quot;&gt;Dolezel J, Barto&amp;scaron; J, Voglmayr H, Greilhuber J (2003). &amp;quot;Nuclear DNA content and genome size of trout and human&amp;quot;. &lt;i&gt;Cytometry A&lt;/i&gt; &lt;b&gt;51&lt;/b&gt; (2): 127&amp;ndash;128. doi:10.1002/cyto.a.10013. PMID&amp;nbsp;12541287.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Nuclear+DNA+content+and+genome+size+of+trout+and+human&amp;amp;rft.jtitle=Cytometry+A&amp;amp;rft.aulast=Dolezel+J%2C+Barto%C5%A1+J%2C+Voglmayr+H%2C+Greilhuber+J&amp;amp;rft.au=Dolezel+J%2C+Barto%C5%A1+J%2C+Voglmayr+H%2C+Greilhuber+J&amp;amp;rft.date=2003&amp;amp;rft.volume=51&amp;amp;rft.issue=2&amp;amp;rft.pages=127%E2%80%93128&amp;amp;rft_id=info:doi/10.1002%2Fcyto.a.10013&amp;amp;rft_id=info:pmid/12541287&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hinegardner1976-1&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Hinegardner R (1976). &amp;quot;Evolution of genome size&amp;quot;. In F.J. Ayala. &lt;i&gt;Molecular Evolution&lt;/i&gt;. Sinauer Associates, Inc., Sunderland. pp.&amp;nbsp;179&amp;ndash;199.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Evolution+of+genome+size&amp;amp;rft.atitle=Molecular+Evolution&amp;amp;rft.aulast=Hinegardner+R&amp;amp;rft.au=Hinegardner+R&amp;amp;rft.date=1976&amp;amp;rft.pages=pp.%26nbsp%3B179%E2%80%93199&amp;amp;rft.pub=Sinauer+Associates%2C+Inc.%2C+Sunderland&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Greilhuber2005-2&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Greilhuber J, Doležel J, Lys&amp;aacute;k M, Bennett MD (2005). &amp;quot;The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents&amp;quot;. &lt;i&gt;Annals of Botany&lt;/i&gt; &lt;b&gt;95&lt;/b&gt; (1): 255&amp;ndash;260. doi:10.1093/aob/mci019. PMID&amp;nbsp;15596473.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+origin%2C+evolution+and+proposed+stabilization+of+the+terms+%27genome+size%27+and+%27C-value%27+to+describe+nuclear+DNA+contents&amp;amp;rft.jtitle=Annals+of+Botany&amp;amp;rft.aulast=Greilhuber+J%2C+Dole%C5%BEel+J%2C+Lys%C3%A1k+M%2C+Bennett+MD&amp;amp;rft.au=Greilhuber+J%2C+Dole%C5%BEel+J%2C+Lys%C3%A1k+M%2C+Bennett+MD&amp;amp;rft.date=2005&amp;amp;rft.volume=95&amp;amp;rft.issue=1&amp;amp;rft.pages=255%E2%80%93260&amp;amp;rft_id=info:doi/10.1093%2Faob%2Fmci019&amp;amp;rft_id=info:pmid/15596473&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hinegardner1968-3&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hinegardner R (1968). &amp;quot;Evolution of cellular DNA content in teleost fishes&amp;quot;. &lt;i&gt;American Naturalist&lt;/i&gt; &lt;b&gt;102&lt;/b&gt;: 517&amp;ndash;523. doi:10.1086/282564.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Evolution+of+cellular+DNA+content+in+teleost+fishes&amp;amp;rft.jtitle=American+Naturalist&amp;amp;rft.aulast=Hinegardner+R&amp;amp;rft.au=Hinegardner+R&amp;amp;rft.date=1968&amp;amp;rft.volume=102&amp;amp;rft.pages=517%E2%80%93523&amp;amp;rft_id=info:doi/10.1086%2F282564&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Wolf1969-4&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Wolf U, Ritter H, Atkin NB, Ohno S (1969). &amp;quot;Polyploidization in the fish family Cyprinidae, Order Cypriniformes. I. DNA-content and chromosome sets in various species of Cyprinidae&amp;quot;. &lt;i&gt;Humangenetik&lt;/i&gt; &lt;b&gt;7&lt;/b&gt; (3): 240&amp;ndash;244. PMID&amp;nbsp;5800705.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Polyploidization+in+the+fish+family+Cyprinidae%2C+Order+Cypriniformes.+I.+DNA-content+and+chromosome+sets+in+various+species+of+Cyprinidae&amp;amp;rft.jtitle=Humangenetik&amp;amp;rft.aulast=Wolf+U%2C+Ritter+H%2C+Atkin+NB%2C+Ohno+S&amp;amp;rft.au=Wolf+U%2C+Ritter+H%2C+Atkin+NB%2C+Ohno+S&amp;amp;rft.date=1969&amp;amp;rft.volume=7&amp;amp;rft.issue=3&amp;amp;rft.pages=240%E2%80%93244&amp;amp;rft_id=info:pmid/5800705&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Ohno1970-5&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation book&quot;&gt;Ohno S (1970). &lt;i&gt;Evolution by Gene Duplication&lt;/i&gt;. New York: Springer-Verlag. ISBN&amp;nbsp;0045750157.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=book&amp;amp;rft.btitle=Evolution+by+Gene+Duplication&amp;amp;rft.aulast=Ohno+S&amp;amp;rft.au=Ohno+S&amp;amp;rft.date=1970&amp;amp;rft.place=New+York&amp;amp;rft.pub=Springer-Verlag&amp;amp;rft.isbn=0045750157&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hardie2002-6&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hardie DC, Gregory TR, Hebert PDN (2002). &amp;quot;From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry&amp;quot;. &lt;i&gt;Journal of Histochemistry and Cytochemistry&lt;/i&gt; &lt;b&gt;50&lt;/b&gt; (6): 735&amp;ndash;749. PMID&amp;nbsp;12019291.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=From+pixels+to+picograms%3A+a+beginners%27+guide+to+genome+quantification+by+Feulgen+image+analysis+densitometry&amp;amp;rft.jtitle=Journal+of+Histochemistry+and+Cytochemistry&amp;amp;rft.aulast=Hardie+DC%2C+Gregory+TR%2C+Hebert+PDN&amp;amp;rft.au=Hardie+DC%2C+Gregory+TR%2C+Hebert+PDN&amp;amp;rft.date=2002&amp;amp;rft.volume=50&amp;amp;rft.issue=6&amp;amp;rft.pages=735%E2%80%93749&amp;amp;rft_id=info:pmid/12019291&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Bennett2005-7&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Bennett MD, Leitch IJ (2005). &amp;quot;Genome size evolution in plants&amp;quot;. In T.R. Gregory. &lt;i&gt;The Evolution of the Genome&lt;/i&gt;. San Diego: Elsevier. pp.&amp;nbsp;89&amp;ndash;162.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Genome+size+evolution+in+plants&amp;amp;rft.atitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Bennett+MD%2C+Leitch+IJ&amp;amp;rft.au=Bennett+MD%2C+Leitch+IJ&amp;amp;rft.date=2005&amp;amp;rft.pages=pp.%26nbsp%3B89%E2%80%93162&amp;amp;rft.place=San+Diego&amp;amp;rft.pub=Elsevier&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Gregory2005-8&quot;&gt;^ &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;a&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;sup&gt;&lt;i&gt;&lt;b&gt;&lt;font size=&quot;2&quot;&gt;b&lt;/font&gt;&lt;/b&gt;&lt;/i&gt;&lt;/sup&gt; &lt;span class=&quot;citation book&quot;&gt;Gregory TR (2005). &amp;quot;Genome size evolution in animals&amp;quot;. In T.R. Gregory. &lt;i&gt;The Evolution of the Genome&lt;/i&gt;. San Diego: Elsevier. pp.&amp;nbsp;3&amp;ndash;87.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=Genome+size+evolution+in+animals&amp;amp;rft.atitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;amp;rft.aulast=Gregory+TR&amp;amp;rft.au=Gregory+TR&amp;amp;rft.date=2005&amp;amp;rft.pages=pp.%26nbsp%3B3%E2%80%9387&amp;amp;rft.place=San+Diego&amp;amp;rft.pub=Elsevier&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Hou2009-9&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Hou Y, Lin S (2009). &amp;quot;Distinct Gene Number- Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes&amp;quot;. &lt;i&gt;PLoS ONE&lt;/i&gt; &lt;b&gt;4&lt;/b&gt; (9): e6978.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Distinct+Gene+Number-+Genome+Size+Relationships+for+Eukaryotes+and+Non-Eukaryotes%3A+Gene+Content+Estimation+for+Dinoflagellate+Genomes&amp;amp;rft.jtitle=PLoS+ONE&amp;amp;rft.aulast=Hou+Y%2C+Lin+S&amp;amp;rft.au=Hou+Y%2C+Lin+S&amp;amp;rft.date=2009&amp;amp;rft.volume=4&amp;amp;rft.issue=9&amp;amp;rft.pages=e6978&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Dufresne2005-10&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Dufresne A, Garczarek L, Partensky F (2005). &amp;quot;Accelerated evolution associated with genome reduction in a free-living prokaryote&amp;quot;. &lt;i&gt;Genome Biol&lt;/i&gt; &lt;b&gt;6&lt;/b&gt;: R14.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Accelerated+evolution+associated+with+genome+reduction+in+a+free-living+prokaryote&amp;amp;rft.jtitle=Genome+Biol&amp;amp;rft.aulast=Dufresne+A%2C+Garczarek+L%2C+Partensky+F&amp;amp;rft.au=Dufresne+A%2C+Garczarek+L%2C+Partensky+F&amp;amp;rft.date=2005&amp;amp;rft.volume=6&amp;amp;rft.pages=R14&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Giovannoni2005-11&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Giovannoni SJ, et al. (2005). &amp;quot;Genome streamlining in a cosmopolitan oceanic bacterium&amp;quot;. &lt;i&gt;Science&lt;/i&gt; &lt;b&gt;309&lt;/b&gt; (5738): 1242&amp;ndash;1245. doi:10.1126/science.1114057. PMID&amp;nbsp;16109880.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+streamlining+in+a+cosmopolitan+oceanic+bacterium&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Giovannoni+SJ%2C+et+al.&amp;amp;rft.au=Giovannoni+SJ%2C+et+al.&amp;amp;rft.date=2005&amp;amp;rft.volume=309&amp;amp;rft.issue=5738&amp;amp;rft.pages=1242%E2%80%931245&amp;amp;rft_id=info:doi/10.1126%2Fscience.1114057&amp;amp;rft_id=info:pmid/16109880&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Giovannoni2008-12&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Giovannoni SJ, et al. (2008). &amp;quot;The small genome of an abundant coastal ocean methylotroph&amp;quot;. &lt;i&gt;Environmental Microbiology&lt;/i&gt; &lt;b&gt;10&lt;/b&gt; (7): 1771&amp;ndash;1782. doi:10.1111/j.1462-2920.2008.01598.x. PMID&amp;nbsp;18393994.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+small+genome+of+an+abundant+coastal+ocean+methylotroph&amp;amp;rft.jtitle=Environmental+Microbiology&amp;amp;rft.aulast=Giovannoni+SJ%2C+et+al.&amp;amp;rft.au=Giovannoni+SJ%2C+et+al.&amp;amp;rft.date=2008&amp;amp;rft.volume=10&amp;amp;rft.issue=7&amp;amp;rft.pages=1771%E2%80%931782&amp;amp;rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01598.x&amp;amp;rft_id=info:pmid/18393994&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Nakabachi2006-13&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Nakabachi A, et al. (2006). &amp;quot;The 160-kilobase genome of the bacterial endosymbiont &lt;i&gt;Carsonella&lt;/i&gt;&amp;quot;. &lt;i&gt;Science&lt;/i&gt; &lt;b&gt;314&lt;/b&gt;: 267&amp;ndash;267. doi:10.1126/science.1134196.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=The+160-kilobase+genome+of+the+bacterial+endosymbiont+%27%27Carsonella%27%27&amp;amp;rft.jtitle=Science&amp;amp;rft.aulast=Nakabachi+A%2C+et+al.&amp;amp;rft.au=Nakabachi+A%2C+et+al.&amp;amp;rft.date=2006&amp;amp;rft.volume=314&amp;amp;rft.pages=267%E2%80%93267&amp;amp;rft_id=info:doi/10.1126%2Fscience.1134196&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Wernegreen2005-14&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Wernegreen J (2005). &amp;quot;For better or worse: Genomic consequences of genomic mutualism and parasitism&amp;quot; (PDF). &lt;i&gt;Current Opinion in Genetics and Development&lt;/i&gt; &lt;b&gt;15&lt;/b&gt;: 1&amp;ndash;12&lt;span class=&quot;printonly&quot;&gt;. http://journals2005.pasteur.ac.ir/COGD/15(6).pdf#page=10&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=For+better+or+worse%3A+Genomic+consequences+of+genomic+mutualism+and+parasitism&amp;amp;rft.jtitle=Current+Opinion+in+Genetics+and+Development&amp;amp;rft.aulast=Wernegreen+J&amp;amp;rft.au=Wernegreen+J&amp;amp;rft.date=2005&amp;amp;rft.volume=15&amp;amp;rft.pages=1%E2%80%9312&amp;amp;rft_id=http%3A%2F%2Fjournals2005.pasteur.ac.ir%2FCOGD%2F15%286%29.pdf%23page%3D10&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-Moran2004-15&quot;&gt;&lt;b&gt;^&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Moran NA, Plague GR (2004). &amp;quot;Genomic changes following host restriction in bacteria&amp;quot;. &lt;i&gt;Current Opinion in Genetics &amp;amp; Development&lt;/i&gt; &lt;b&gt;14&lt;/b&gt;: 627&amp;ndash;633. doi:10.1016/j.gde.2004.09.003.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genomic+changes+following+host+restriction+in+bacteria&amp;amp;rft.jtitle=Current+Opinion+in+Genetics+%26+Development&amp;amp;rft.aulast=Moran+NA%2C+Plague+GR&amp;amp;rft.au=Moran+NA%2C+Plague+GR&amp;amp;rft.date=2004&amp;amp;rft.volume=14&amp;amp;rft.pages=627%E2%80%93633&amp;amp;rft_id=info:doi/10.1016%2Fj.gde.2004.09.003&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;h3&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h3&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.chlamydiae.com/docs/Chlamydiales/ev_genomedegradn.asp&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Evolution of Chlamydiaceae&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Andersson JO Andersson SG (1999). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Genome degradation is an ongoing process in Rickettsia&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Molecular Biology and Evolution&lt;/i&gt; &lt;b&gt;16&lt;/b&gt; (9): 1178&amp;ndash;1191. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/10486973&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10486973&lt;/font&gt;&lt;/a&gt;&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://mbe.oupjournals.org/cgi/content/abstract/16/9/1178&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Genome+degradation+is+an+ongoing+process+in+Rickettsia&amp;amp;rft.jtitle=Molecular+Biology+and+Evolution&amp;amp;rft.aulast=Andersson+JO+Andersson+SG&amp;amp;rft.au=Andersson+JO+Andersson+SG&amp;amp;rft.date=1999&amp;amp;rft.volume=16&amp;amp;rft.issue=9&amp;amp;rft.pages=1178%E2%80%931191&amp;amp;rft_id=info:pmid/10486973&amp;amp;rft_id=http%3A%2F%2Fmbe.oupjournals.org%2Fcgi%2Fcontent%2Fabstract%2F16%2F9%2F1178&amp;amp;rfr_id=info:sid/en.wikipedia.org:Genome_size&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.genomesize.com&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Animal Genome Size Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.rbgkew.org.uk/cval/homepage.html&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Plant DNA C-values Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.zbi.ee/fungal-genomesize/index.php&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Fungal Genome Size Database&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.cbs.dtu.dk/services/FD/&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;Fungal Database&lt;/font&gt;&lt;/a&gt; &amp;mdash; by CBS&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=NA18507_Nature_paper&diff=3416 NA18507 Nature paper 2011-01-16T07:20:22Z <p>WikiSysop: </p> <hr /> <div>&lt;div class=&quot;fm-title&quot;&gt;&lt;span style=&quot;font-size: large&quot;&gt;Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-title&quot;&gt;&amp;nbsp;&lt;/div&gt;<br /> &lt;div class=&quot;contrib-group fm-author&quot;&gt;&lt;span style=&quot;font-size: x-small&quot;&gt;David R. Bentley,&lt;sup&gt;1&lt;/sup&gt; Shankar Balasubramanian,&lt;sup&gt;2*&lt;/sup&gt; Harold P. Swerdlow,&lt;sup&gt;1&amp;dagger;&lt;/sup&gt; Geoffrey P. Smith,&lt;sup&gt;1&lt;/sup&gt; John Milton,&lt;sup&gt;1&amp;sect;&lt;/sup&gt; Clive G. Brown,&lt;sup&gt;1&amp;sect;&lt;/sup&gt; Kevin P. Hall,&lt;sup&gt;1&lt;/sup&gt; Dirk J. Evers,&lt;sup&gt;1&lt;/sup&gt; Colin L. Barnes,&lt;sup&gt;1,2&lt;/sup&gt; Helen R. Bignell,&lt;sup&gt;1&lt;/sup&gt; Jonathan M. Boutell,&lt;sup&gt;1&lt;/sup&gt; Jason Bryant,&lt;sup&gt;1&lt;/sup&gt; Richard J. Carter,&lt;sup&gt;1&lt;/sup&gt; R. Keira Cheetham,&lt;sup&gt;1&lt;/sup&gt; Anthony J. Cox,&lt;sup&gt;1&lt;/sup&gt; Darren J. Ellis,&lt;sup&gt;1&lt;/sup&gt; Michael R. Flatbush,&lt;sup&gt;3&lt;/sup&gt; Niall A. Gormley,&lt;sup&gt;1&lt;/sup&gt; Sean J. Humphray,&lt;sup&gt;1&lt;/sup&gt; Leslie J. Irving,&lt;sup&gt;1&lt;/sup&gt; Mirian S. Karbelashvili,&lt;sup&gt;3&lt;/sup&gt; Scott M. Kirk,&lt;sup&gt;3&lt;/sup&gt; Heng Li,&lt;sup&gt;4&lt;/sup&gt; Xiaohai Liu,&lt;sup&gt;1,2&lt;/sup&gt; Klaus S. Maisinger,&lt;sup&gt;1&lt;/sup&gt; Lisa J. Murray,&lt;sup&gt;1&lt;/sup&gt; Bojan Obradovic,&lt;sup&gt;1&lt;/sup&gt; Tobias Ost,&lt;sup&gt;1&lt;/sup&gt; Michael L. Parkinson,&lt;sup&gt;1&lt;/sup&gt; Mark R. Pratt,&lt;sup&gt;3&lt;/sup&gt; Isabelle M. J. Rasolonjatovo,&lt;sup&gt;1&lt;/sup&gt; Mark T. Reed,&lt;sup&gt;3&lt;/sup&gt; Roberto Rigatti,&lt;sup&gt;1&lt;/sup&gt; Chiara Rodighiero,&lt;sup&gt;1&lt;/sup&gt; Mark T. Ross,&lt;sup&gt;1&lt;/sup&gt; Andrea Sabot,&lt;sup&gt;1&lt;/sup&gt; Subramanian V. Sankar,&lt;sup&gt;3&lt;/sup&gt; Aylwyn Scally,&lt;sup&gt;4&lt;/sup&gt; Gary P. Schroth,&lt;sup&gt;3&lt;/sup&gt; Mark E. Smith,&lt;sup&gt;1&lt;/sup&gt; Vincent P. Smith,&lt;sup&gt;1&lt;/sup&gt; Anastassia Spiridou,&lt;sup&gt;1&lt;/sup&gt; Peta E. Torrance,&lt;sup&gt;1&lt;/sup&gt; Svilen S. Tzonev,&lt;sup&gt;3&lt;/sup&gt; Eric H. Vermaas,&lt;sup&gt;3&lt;/sup&gt; Klaudia Walter,&lt;sup&gt;4&lt;/sup&gt; Xiaolin Wu,&lt;sup&gt;1&lt;/sup&gt; Lu Zhang,&lt;sup&gt;3&lt;/sup&gt; Mohammed D. Alam,&lt;sup&gt;3&lt;/sup&gt; Carole Anastasi,&lt;sup&gt;1&lt;/sup&gt; Ify C. Aniebo,&lt;sup&gt;1&lt;/sup&gt; David M. D. Bailey,&lt;sup&gt;1&lt;/sup&gt; Iain R. Bancarz,&lt;sup&gt;1&lt;/sup&gt; Saibal Banerjee,&lt;sup&gt;3&lt;/sup&gt; Selena G. Barbour,&lt;sup&gt;1&lt;/sup&gt; Primo A. Baybayan,&lt;sup&gt;3&lt;/sup&gt; Vincent A. Benoit,&lt;sup&gt;1&lt;/sup&gt; Kevin F. Benson,&lt;sup&gt;1&lt;/sup&gt; Claire Bevis,&lt;sup&gt;1&lt;/sup&gt; Phillip J. Black,&lt;sup&gt;1&lt;/sup&gt; Asha Boodhun,&lt;sup&gt;1&lt;/sup&gt; Joe S. Brennan,&lt;sup&gt;1&lt;/sup&gt; John A. Bridgham,&lt;sup&gt;3&lt;/sup&gt; Rob C. Brown,&lt;sup&gt;1&lt;/sup&gt; Andrew A. Brown,&lt;sup&gt;1&lt;/sup&gt; Dale H. Buermann,&lt;sup&gt;3&lt;/sup&gt; Abass A. Bundu,&lt;sup&gt;1&lt;/sup&gt; James C. Burrows,&lt;sup&gt;3&lt;/sup&gt; Nigel P. Carter,&lt;sup&gt;4&lt;/sup&gt; Nestor Castillo,&lt;sup&gt;3&lt;/sup&gt; Maria Chiara E. Catenazzi,&lt;sup&gt;1&lt;/sup&gt; Simon Chang,&lt;sup&gt;3&lt;/sup&gt; R. Neil Cooley,&lt;sup&gt;1&lt;/sup&gt; Natasha R. Crake,&lt;sup&gt;1&lt;/sup&gt; Olubunmi O. Dada,&lt;sup&gt;1&lt;/sup&gt; Konstantinos D. Diakoumakos,&lt;sup&gt;1&lt;/sup&gt; Belen Dominguez-Fernandez,&lt;sup&gt;1&lt;/sup&gt; David J. Earnshaw,&lt;sup&gt;1,2&lt;/sup&gt; Ugonna C. Egbujor,&lt;sup&gt;1&lt;/sup&gt; David W. Elmore,&lt;sup&gt;3&lt;/sup&gt; Sergey S. Etchin,&lt;sup&gt;3&lt;/sup&gt; Mark R. Ewan,&lt;sup&gt;3&lt;/sup&gt; Milan Fedurco,&lt;sup&gt;5&lt;/sup&gt; Louise J. Fraser,&lt;sup&gt;1&lt;/sup&gt; Karin V. Fuentes Fajardo,&lt;sup&gt;1&lt;/sup&gt; W. Scott Furey,&lt;sup&gt;2&lt;/sup&gt; David George,&lt;sup&gt;3&lt;/sup&gt; Kimberley J. Gietzen,&lt;sup&gt;6&lt;/sup&gt; Colin P. Goddard,&lt;sup&gt;1&lt;/sup&gt; George S. Golda,&lt;sup&gt;3&lt;/sup&gt; Philip A. Granieri,&lt;sup&gt;3&lt;/sup&gt; David E. Green,&lt;sup&gt;1&lt;/sup&gt; David L. Gustafson,&lt;sup&gt;3&lt;/sup&gt; Nancy F. Hansen,&lt;sup&gt;7&lt;/sup&gt; Kevin Harnish,&lt;sup&gt;1&lt;/sup&gt; Christian D. Haudenschild,&lt;sup&gt;3&lt;/sup&gt; Narinder I. Heyer,&lt;sup&gt;1&lt;/sup&gt; Matthew M. Hims,&lt;sup&gt;1&lt;/sup&gt; Johnny T. Ho,&lt;sup&gt;3&lt;/sup&gt; Adrian M. Horgan,&lt;sup&gt;1&lt;/sup&gt; Katya Hoschler,&lt;sup&gt;1&lt;/sup&gt; Steve Hurwitz,&lt;sup&gt;3&lt;/sup&gt; Denis V. Ivanov,&lt;sup&gt;3&lt;/sup&gt; Maria Q. Johnson,&lt;sup&gt;3&lt;/sup&gt; Terena James,&lt;sup&gt;1&lt;/sup&gt; T. A. Huw Jones,&lt;sup&gt;1&lt;/sup&gt; Gyoung-Dong Kang,&lt;sup&gt;1&lt;/sup&gt; Tzvetana H. Kerelska,&lt;sup&gt;3&lt;/sup&gt; Alan D. Kersey,&lt;sup&gt;1&lt;/sup&gt; Irina Khrebtukova,&lt;sup&gt;3&lt;/sup&gt; Alex P. Kindwall,&lt;sup&gt;3&lt;/sup&gt; Zoya Kingsbury,&lt;sup&gt;1&lt;/sup&gt; Paula I. Kokko-Gonzales,&lt;sup&gt;1&lt;/sup&gt; Anil Kumar,&lt;sup&gt;1&lt;/sup&gt; Marc A. Laurent,&lt;sup&gt;6&lt;/sup&gt; Cynthia T. Lawley,&lt;sup&gt;6&lt;/sup&gt; Sarah E. Lee,&lt;sup&gt;1&lt;/sup&gt; Xavier Lee,&lt;sup&gt;3&lt;/sup&gt; Arnold K. Liao,&lt;sup&gt;3&lt;/sup&gt; Jennifer A. Loch,&lt;sup&gt;1&lt;/sup&gt; Mitch Lok,&lt;sup&gt;3&lt;/sup&gt; Shujun Luo,&lt;sup&gt;3&lt;/sup&gt; Radhika M. Mammen,&lt;sup&gt;1&lt;/sup&gt; John W. Martin,&lt;sup&gt;3&lt;/sup&gt; Patrick G. McCauley,&lt;sup&gt;1&lt;/sup&gt; Paul McNitt,&lt;sup&gt;3&lt;/sup&gt; Parul Mehta,&lt;sup&gt;1&lt;/sup&gt; Keith W. Moon,&lt;sup&gt;3&lt;/sup&gt; Joe W. Mullens,&lt;sup&gt;3&lt;/sup&gt; Taksina Newington,&lt;sup&gt;1&lt;/sup&gt; Zemin Ning,&lt;sup&gt;4&lt;/sup&gt; Bee Ling Ng,&lt;sup&gt;4&lt;/sup&gt; Sonia M. Novo,&lt;sup&gt;1&lt;/sup&gt; Michael J. O'Neill,&lt;sup&gt;3&lt;/sup&gt; Mark A. Osborne,&lt;sup&gt;1,2&lt;/sup&gt; Andrew Osnowski,&lt;sup&gt;1&lt;/sup&gt; Omead Ostadan,&lt;sup&gt;3,6&lt;/sup&gt; Lambros L. Paraschos,&lt;sup&gt;3&lt;/sup&gt; Lea Pickering,&lt;sup&gt;1&lt;/sup&gt; Andrew C. Pike,&lt;sup&gt;1&lt;/sup&gt; Alger C. Pike,&lt;sup&gt;3&lt;/sup&gt; D. Chris Pinkard,&lt;sup&gt;3&lt;/sup&gt; Daniel P. Pliskin,&lt;sup&gt;3&lt;/sup&gt; Joe Podhasky,&lt;sup&gt;3&lt;/sup&gt; Victor J. Quijano,&lt;sup&gt;3&lt;/sup&gt; Come Raczy,&lt;sup&gt;1&lt;/sup&gt; Vicki H. Rae,&lt;sup&gt;1&lt;/sup&gt; Stephen R. Rawlings,&lt;sup&gt;1&lt;/sup&gt; Ana Chiva Rodriguez,&lt;sup&gt;1&lt;/sup&gt; Phyllida M. Roe,&lt;sup&gt;1&lt;/sup&gt; John Rogers,&lt;sup&gt;1&lt;/sup&gt; Maria C. Rogert Bacigalupo,&lt;sup&gt;1&lt;/sup&gt; Nikolai Romanov,&lt;sup&gt;1&lt;/sup&gt; Anthony Romieu,&lt;sup&gt;5&lt;/sup&gt; Rithy K. Roth,&lt;sup&gt;3&lt;/sup&gt; Natalie J. Rourke,&lt;sup&gt;1&lt;/sup&gt; Silke T. Ruediger,&lt;sup&gt;1&lt;/sup&gt; Eli Rusman,&lt;sup&gt;3&lt;/sup&gt; Raquel M. Sanches-Kuiper,&lt;sup&gt;1&lt;/sup&gt; Martin R. Schenker,&lt;sup&gt;1&lt;/sup&gt; Josefina M. Seoane,&lt;sup&gt;3&lt;/sup&gt; Richard J. Shaw,&lt;sup&gt;1&lt;/sup&gt; Mitch K. Shiver,&lt;sup&gt;3&lt;/sup&gt; Steven W. Short,&lt;sup&gt;3&lt;/sup&gt; Ning L. Sizto,&lt;sup&gt;3&lt;/sup&gt; Johannes P. Sluis,&lt;sup&gt;3&lt;/sup&gt; Melanie A. Smith,&lt;sup&gt;1&lt;/sup&gt; Jean Ernest Sohna Sohna,&lt;sup&gt;1&lt;/sup&gt; Eric J. Spence,&lt;sup&gt;3&lt;/sup&gt; Kim Stevens,&lt;sup&gt;1&lt;/sup&gt; Neil Sutton,&lt;sup&gt;1&lt;/sup&gt; Lukasz Szajkowski,&lt;sup&gt;1&lt;/sup&gt; Carolyn L. Tregidgo,&lt;sup&gt;1&lt;/sup&gt; Gerardo Turcatti,&lt;sup&gt;5&lt;/sup&gt; Stephanie vandeVondele,&lt;sup&gt;1&lt;/sup&gt; Yuli Verhovsky,&lt;sup&gt;3&lt;/sup&gt; Selene M. Virk,&lt;sup&gt;3&lt;/sup&gt; Suzanne Wakelin,&lt;sup&gt;3&lt;/sup&gt; Gregory C. Walcott,&lt;sup&gt;3&lt;/sup&gt; Jingwen Wang,&lt;sup&gt;1&lt;/sup&gt; Graham J. Worsley,&lt;sup&gt;1&lt;/sup&gt; Juying Yan,&lt;sup&gt;3&lt;/sup&gt; Ling Yau,&lt;sup&gt;3&lt;/sup&gt; Mike Zuerlein,&lt;sup&gt;3&lt;/sup&gt; Jane Rogers,&lt;sup&gt;4&lt;/sup&gt; James C. Mullikin,&lt;sup&gt;7&lt;/sup&gt; Matthew E. Hurles,&lt;sup&gt;4&lt;/sup&gt; Nick J. McCooke,&lt;sup&gt;1&amp;Dagger;&lt;/sup&gt; John S. West,&lt;sup&gt;3&lt;/sup&gt; Frank L. Oaks,&lt;sup&gt;3&lt;/sup&gt; Peter L. Lundberg,&lt;sup&gt;3&lt;/sup&gt; David Klenerman,&lt;sup&gt;2*&lt;/sup&gt; [[Richard Durbin]],&lt;sup&gt;4&lt;/sup&gt; and Anthony J. Smith&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;contrib-group fm-author&quot;&gt;&amp;nbsp;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt;&lt;span style=&quot;font-size: small&quot;&gt;Illumina Cambridge Ltd., (Formerly Solexa Ltd) Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex. CB10 1XL, UK&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;2&lt;/sup&gt;Department of Chemistry, University of Cambridge, The University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;3&lt;/sup&gt;Illumina Hayward, (Formerly Solexa Inc) 23851 Industrial Bvld, Hayward, CA 94343, USA&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;4&lt;/sup&gt;The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;5&lt;/sup&gt;Manteia Predictive Medicine S.A. Zone Industrielle, Coinsins, CH-1267, Switzerland&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;6&lt;/sup&gt;Illumina Inc. ,Corporate Headquarters, 9883 Towne Centre Drive, San Diego, CA 92121, USA&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;7&lt;/sup&gt;National Human Genome Research Institute, National Institutes of Health, 41 Center Drive, MSC 2132, 9000 Rockville Pike, Bethesda, MD 20892-2132, USA&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;FN1&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;*&lt;/sup&gt;Inventors and founders of Solexa Ltd&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;FN2&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;&amp;dagger;&lt;/sup&gt;The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;FN3&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;&amp;sect;&lt;/sup&gt;Oxford Nanopore Technologies, Begbroke Science Park, Sandy Lane, Kidlington. OX5 1PF&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;FN4&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;&amp;Dagger;&lt;/sup&gt;Pronota, NV, VIB Bio-Incubator, Technologiepark 4, B-9052 Zwijnaarde / Ghent, Belgium&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;cor1&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;Correspondence and requests for materials should be addressed to David.R. Bentley (&lt;span class=&quot;email-label&quot;&gt;Email: &lt;/span&gt;&lt;/span&gt;&lt;span class=&quot;e_id4842102&quot;&gt;&lt;a class=&quot;ext-reflink&quot; href=&quot;mailto:dbentley@illumina.com&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;dbentley@illumina.com&lt;/span&gt;&lt;/a&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small&quot;&gt; &lt;script language=&quot;JavaScript&quot; type=&quot;text/javascript&quot;&gt;&lt;!--<br /> try{initUnObscureEmail (&quot;e_id4842102&quot;, '&lt;a class=&quot;ext-reflink&quot; href=&quot;' + reverseAndReplaceString('moc.animulli/ta/yeltnebd:otliam', '/at/', '@') + '&quot;&gt;' + reverseAndReplaceString('moc.animulli/ta/yeltnebd', '/at/','@') + '&lt;/a&gt;')}catch(e){}<br /> //--&gt;&lt;/script&gt;)&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=NA18507_Nature_paper&diff=3415 NA18507 Nature paper 2011-01-16T07:19:59Z <p>WikiSysop: </p> <hr /> <div>&lt;div class=&quot;fm-title&quot;&gt;&lt;span style=&quot;font-size: large&quot;&gt;Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-title&quot;&gt;&amp;nbsp;&lt;/div&gt;<br /> &lt;div class=&quot;contrib-group fm-author&quot;&gt;&lt;span style=&quot;font-size: x-small&quot;&gt;David R. Bentley,&lt;sup&gt;1&lt;/sup&gt; Shankar Balasubramanian,&lt;sup&gt;2*&lt;/sup&gt; Harold P. Swerdlow,&lt;sup&gt;1&amp;dagger;&lt;/sup&gt; Geoffrey P. Smith,&lt;sup&gt;1&lt;/sup&gt; John Milton,&lt;sup&gt;1&amp;sect;&lt;/sup&gt; Clive G. Brown,&lt;sup&gt;1&amp;sect;&lt;/sup&gt; Kevin P. Hall,&lt;sup&gt;1&lt;/sup&gt; Dirk J. Evers,&lt;sup&gt;1&lt;/sup&gt; Colin L. Barnes,&lt;sup&gt;1,2&lt;/sup&gt; Helen R. Bignell,&lt;sup&gt;1&lt;/sup&gt; Jonathan M. Boutell,&lt;sup&gt;1&lt;/sup&gt; Jason Bryant,&lt;sup&gt;1&lt;/sup&gt; Richard J. Carter,&lt;sup&gt;1&lt;/sup&gt; R. Keira Cheetham,&lt;sup&gt;1&lt;/sup&gt; Anthony J. Cox,&lt;sup&gt;1&lt;/sup&gt; Darren J. Ellis,&lt;sup&gt;1&lt;/sup&gt; Michael R. Flatbush,&lt;sup&gt;3&lt;/sup&gt; Niall A. Gormley,&lt;sup&gt;1&lt;/sup&gt; Sean J. Humphray,&lt;sup&gt;1&lt;/sup&gt; Leslie J. Irving,&lt;sup&gt;1&lt;/sup&gt; Mirian S. Karbelashvili,&lt;sup&gt;3&lt;/sup&gt; Scott M. Kirk,&lt;sup&gt;3&lt;/sup&gt; Heng Li,&lt;sup&gt;4&lt;/sup&gt; Xiaohai Liu,&lt;sup&gt;1,2&lt;/sup&gt; Klaus S. Maisinger,&lt;sup&gt;1&lt;/sup&gt; Lisa J. Murray,&lt;sup&gt;1&lt;/sup&gt; Bojan Obradovic,&lt;sup&gt;1&lt;/sup&gt; Tobias Ost,&lt;sup&gt;1&lt;/sup&gt; Michael L. Parkinson,&lt;sup&gt;1&lt;/sup&gt; Mark R. Pratt,&lt;sup&gt;3&lt;/sup&gt; Isabelle M. J. Rasolonjatovo,&lt;sup&gt;1&lt;/sup&gt; Mark T. Reed,&lt;sup&gt;3&lt;/sup&gt; Roberto Rigatti,&lt;sup&gt;1&lt;/sup&gt; Chiara Rodighiero,&lt;sup&gt;1&lt;/sup&gt; Mark T. Ross,&lt;sup&gt;1&lt;/sup&gt; Andrea Sabot,&lt;sup&gt;1&lt;/sup&gt; Subramanian V. Sankar,&lt;sup&gt;3&lt;/sup&gt; Aylwyn Scally,&lt;sup&gt;4&lt;/sup&gt; Gary P. Schroth,&lt;sup&gt;3&lt;/sup&gt; Mark E. Smith,&lt;sup&gt;1&lt;/sup&gt; Vincent P. Smith,&lt;sup&gt;1&lt;/sup&gt; Anastassia Spiridou,&lt;sup&gt;1&lt;/sup&gt; Peta E. Torrance,&lt;sup&gt;1&lt;/sup&gt; Svilen S. Tzonev,&lt;sup&gt;3&lt;/sup&gt; Eric H. Vermaas,&lt;sup&gt;3&lt;/sup&gt; Klaudia Walter,&lt;sup&gt;4&lt;/sup&gt; Xiaolin Wu,&lt;sup&gt;1&lt;/sup&gt; Lu Zhang,&lt;sup&gt;3&lt;/sup&gt; Mohammed D. Alam,&lt;sup&gt;3&lt;/sup&gt; Carole Anastasi,&lt;sup&gt;1&lt;/sup&gt; Ify C. Aniebo,&lt;sup&gt;1&lt;/sup&gt; David M. D. Bailey,&lt;sup&gt;1&lt;/sup&gt; Iain R. Bancarz,&lt;sup&gt;1&lt;/sup&gt; Saibal Banerjee,&lt;sup&gt;3&lt;/sup&gt; Selena G. Barbour,&lt;sup&gt;1&lt;/sup&gt; Primo A. Baybayan,&lt;sup&gt;3&lt;/sup&gt; Vincent A. Benoit,&lt;sup&gt;1&lt;/sup&gt; Kevin F. Benson,&lt;sup&gt;1&lt;/sup&gt; Claire Bevis,&lt;sup&gt;1&lt;/sup&gt; Phillip J. Black,&lt;sup&gt;1&lt;/sup&gt; Asha Boodhun,&lt;sup&gt;1&lt;/sup&gt; Joe S. Brennan,&lt;sup&gt;1&lt;/sup&gt; John A. Bridgham,&lt;sup&gt;3&lt;/sup&gt; Rob C. Brown,&lt;sup&gt;1&lt;/sup&gt; Andrew A. Brown,&lt;sup&gt;1&lt;/sup&gt; Dale H. Buermann,&lt;sup&gt;3&lt;/sup&gt; Abass A. Bundu,&lt;sup&gt;1&lt;/sup&gt; James C. Burrows,&lt;sup&gt;3&lt;/sup&gt; Nigel P. Carter,&lt;sup&gt;4&lt;/sup&gt; Nestor Castillo,&lt;sup&gt;3&lt;/sup&gt; Maria Chiara E. Catenazzi,&lt;sup&gt;1&lt;/sup&gt; Simon Chang,&lt;sup&gt;3&lt;/sup&gt; R. Neil Cooley,&lt;sup&gt;1&lt;/sup&gt; Natasha R. Crake,&lt;sup&gt;1&lt;/sup&gt; Olubunmi O. Dada,&lt;sup&gt;1&lt;/sup&gt; Konstantinos D. Diakoumakos,&lt;sup&gt;1&lt;/sup&gt; Belen Dominguez-Fernandez,&lt;sup&gt;1&lt;/sup&gt; David J. Earnshaw,&lt;sup&gt;1,2&lt;/sup&gt; Ugonna C. Egbujor,&lt;sup&gt;1&lt;/sup&gt; David W. Elmore,&lt;sup&gt;3&lt;/sup&gt; Sergey S. Etchin,&lt;sup&gt;3&lt;/sup&gt; Mark R. Ewan,&lt;sup&gt;3&lt;/sup&gt; Milan Fedurco,&lt;sup&gt;5&lt;/sup&gt; Louise J. Fraser,&lt;sup&gt;1&lt;/sup&gt; Karin V. Fuentes Fajardo,&lt;sup&gt;1&lt;/sup&gt; W. Scott Furey,&lt;sup&gt;2&lt;/sup&gt; David George,&lt;sup&gt;3&lt;/sup&gt; Kimberley J. Gietzen,&lt;sup&gt;6&lt;/sup&gt; Colin P. Goddard,&lt;sup&gt;1&lt;/sup&gt; George S. Golda,&lt;sup&gt;3&lt;/sup&gt; Philip A. Granieri,&lt;sup&gt;3&lt;/sup&gt; David E. Green,&lt;sup&gt;1&lt;/sup&gt; David L. Gustafson,&lt;sup&gt;3&lt;/sup&gt; Nancy F. Hansen,&lt;sup&gt;7&lt;/sup&gt; Kevin Harnish,&lt;sup&gt;1&lt;/sup&gt; Christian D. Haudenschild,&lt;sup&gt;3&lt;/sup&gt; Narinder I. Heyer,&lt;sup&gt;1&lt;/sup&gt; Matthew M. Hims,&lt;sup&gt;1&lt;/sup&gt; Johnny T. Ho,&lt;sup&gt;3&lt;/sup&gt; Adrian M. Horgan,&lt;sup&gt;1&lt;/sup&gt; Katya Hoschler,&lt;sup&gt;1&lt;/sup&gt; Steve Hurwitz,&lt;sup&gt;3&lt;/sup&gt; Denis V. Ivanov,&lt;sup&gt;3&lt;/sup&gt; Maria Q. Johnson,&lt;sup&gt;3&lt;/sup&gt; Terena James,&lt;sup&gt;1&lt;/sup&gt; T. A. Huw Jones,&lt;sup&gt;1&lt;/sup&gt; Gyoung-Dong Kang,&lt;sup&gt;1&lt;/sup&gt; Tzvetana H. Kerelska,&lt;sup&gt;3&lt;/sup&gt; Alan D. Kersey,&lt;sup&gt;1&lt;/sup&gt; Irina Khrebtukova,&lt;sup&gt;3&lt;/sup&gt; Alex P. Kindwall,&lt;sup&gt;3&lt;/sup&gt; Zoya Kingsbury,&lt;sup&gt;1&lt;/sup&gt; Paula I. Kokko-Gonzales,&lt;sup&gt;1&lt;/sup&gt; Anil Kumar,&lt;sup&gt;1&lt;/sup&gt; Marc A. Laurent,&lt;sup&gt;6&lt;/sup&gt; Cynthia T. Lawley,&lt;sup&gt;6&lt;/sup&gt; Sarah E. Lee,&lt;sup&gt;1&lt;/sup&gt; Xavier Lee,&lt;sup&gt;3&lt;/sup&gt; Arnold K. Liao,&lt;sup&gt;3&lt;/sup&gt; Jennifer A. Loch,&lt;sup&gt;1&lt;/sup&gt; Mitch Lok,&lt;sup&gt;3&lt;/sup&gt; Shujun Luo,&lt;sup&gt;3&lt;/sup&gt; Radhika M. Mammen,&lt;sup&gt;1&lt;/sup&gt; John W. Martin,&lt;sup&gt;3&lt;/sup&gt; Patrick G. McCauley,&lt;sup&gt;1&lt;/sup&gt; Paul McNitt,&lt;sup&gt;3&lt;/sup&gt; Parul Mehta,&lt;sup&gt;1&lt;/sup&gt; Keith W. Moon,&lt;sup&gt;3&lt;/sup&gt; Joe W. Mullens,&lt;sup&gt;3&lt;/sup&gt; Taksina Newington,&lt;sup&gt;1&lt;/sup&gt; Zemin Ning,&lt;sup&gt;4&lt;/sup&gt; Bee Ling Ng,&lt;sup&gt;4&lt;/sup&gt; Sonia M. Novo,&lt;sup&gt;1&lt;/sup&gt; Michael J. O'Neill,&lt;sup&gt;3&lt;/sup&gt; Mark A. Osborne,&lt;sup&gt;1,2&lt;/sup&gt; Andrew Osnowski,&lt;sup&gt;1&lt;/sup&gt; Omead Ostadan,&lt;sup&gt;3,6&lt;/sup&gt; Lambros L. Paraschos,&lt;sup&gt;3&lt;/sup&gt; Lea Pickering,&lt;sup&gt;1&lt;/sup&gt; Andrew C. Pike,&lt;sup&gt;1&lt;/sup&gt; Alger C. Pike,&lt;sup&gt;3&lt;/sup&gt; D. Chris Pinkard,&lt;sup&gt;3&lt;/sup&gt; Daniel P. Pliskin,&lt;sup&gt;3&lt;/sup&gt; Joe Podhasky,&lt;sup&gt;3&lt;/sup&gt; Victor J. Quijano,&lt;sup&gt;3&lt;/sup&gt; Come Raczy,&lt;sup&gt;1&lt;/sup&gt; Vicki H. Rae,&lt;sup&gt;1&lt;/sup&gt; Stephen R. Rawlings,&lt;sup&gt;1&lt;/sup&gt; Ana Chiva Rodriguez,&lt;sup&gt;1&lt;/sup&gt; Phyllida M. Roe,&lt;sup&gt;1&lt;/sup&gt; John Rogers,&lt;sup&gt;1&lt;/sup&gt; Maria C. Rogert Bacigalupo,&lt;sup&gt;1&lt;/sup&gt; Nikolai Romanov,&lt;sup&gt;1&lt;/sup&gt; Anthony Romieu,&lt;sup&gt;5&lt;/sup&gt; Rithy K. Roth,&lt;sup&gt;3&lt;/sup&gt; Natalie J. Rourke,&lt;sup&gt;1&lt;/sup&gt; Silke T. Ruediger,&lt;sup&gt;1&lt;/sup&gt; Eli Rusman,&lt;sup&gt;3&lt;/sup&gt; Raquel M. Sanches-Kuiper,&lt;sup&gt;1&lt;/sup&gt; Martin R. Schenker,&lt;sup&gt;1&lt;/sup&gt; Josefina M. Seoane,&lt;sup&gt;3&lt;/sup&gt; Richard J. Shaw,&lt;sup&gt;1&lt;/sup&gt; Mitch K. Shiver,&lt;sup&gt;3&lt;/sup&gt; Steven W. Short,&lt;sup&gt;3&lt;/sup&gt; Ning L. Sizto,&lt;sup&gt;3&lt;/sup&gt; Johannes P. Sluis,&lt;sup&gt;3&lt;/sup&gt; Melanie A. Smith,&lt;sup&gt;1&lt;/sup&gt; Jean Ernest Sohna Sohna,&lt;sup&gt;1&lt;/sup&gt; Eric J. Spence,&lt;sup&gt;3&lt;/sup&gt; Kim Stevens,&lt;sup&gt;1&lt;/sup&gt; Neil Sutton,&lt;sup&gt;1&lt;/sup&gt; Lukasz Szajkowski,&lt;sup&gt;1&lt;/sup&gt; Carolyn L. Tregidgo,&lt;sup&gt;1&lt;/sup&gt; Gerardo Turcatti,&lt;sup&gt;5&lt;/sup&gt; Stephanie vandeVondele,&lt;sup&gt;1&lt;/sup&gt; Yuli Verhovsky,&lt;sup&gt;3&lt;/sup&gt; Selene M. Virk,&lt;sup&gt;3&lt;/sup&gt; Suzanne Wakelin,&lt;sup&gt;3&lt;/sup&gt; Gregory C. Walcott,&lt;sup&gt;3&lt;/sup&gt; Jingwen Wang,&lt;sup&gt;1&lt;/sup&gt; Graham J. Worsley,&lt;sup&gt;1&lt;/sup&gt; Juying Yan,&lt;sup&gt;3&lt;/sup&gt; Ling Yau,&lt;sup&gt;3&lt;/sup&gt; Mike Zuerlein,&lt;sup&gt;3&lt;/sup&gt; Jane Rogers,&lt;sup&gt;4&lt;/sup&gt; James C. Mullikin,&lt;sup&gt;7&lt;/sup&gt; Matthew E. Hurles,&lt;sup&gt;4&lt;/sup&gt; Nick J. McCooke,&lt;sup&gt;1&amp;Dagger;&lt;/sup&gt; John S. West,&lt;sup&gt;3&lt;/sup&gt; Frank L. Oaks,&lt;sup&gt;3&lt;/sup&gt; Peter L. Lundberg,&lt;sup&gt;3&lt;/sup&gt; David Klenerman,&lt;sup&gt;2*&lt;/sup&gt; Richard Durbin,&lt;sup&gt;4&lt;/sup&gt; and Anthony J. Smith&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;contrib-group fm-author&quot;&gt;&amp;nbsp;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt;&lt;span style=&quot;font-size: small&quot;&gt;Illumina Cambridge Ltd., (Formerly Solexa Ltd) Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex. CB10 1XL, UK&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;2&lt;/sup&gt;Department of Chemistry, University of Cambridge, The University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;3&lt;/sup&gt;Illumina Hayward, (Formerly Solexa Inc) 23851 Industrial Bvld, Hayward, CA 94343, USA&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;4&lt;/sup&gt;The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;5&lt;/sup&gt;Manteia Predictive Medicine S.A. Zone Industrielle, Coinsins, CH-1267, Switzerland&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;6&lt;/sup&gt;Illumina Inc. ,Corporate Headquarters, 9883 Towne Centre Drive, San Diego, CA 92121, USA&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;7&lt;/sup&gt;National Human Genome Research Institute, National Institutes of Health, 41 Center Drive, MSC 2132, 9000 Rockville Pike, Bethesda, MD 20892-2132, USA&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;FN1&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;*&lt;/sup&gt;Inventors and founders of Solexa Ltd&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;FN2&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;&amp;dagger;&lt;/sup&gt;The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;FN3&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;&amp;sect;&lt;/sup&gt;Oxford Nanopore Technologies, Begbroke Science Park, Sandy Lane, Kidlington. OX5 1PF&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;FN4&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;&lt;sup&gt;&amp;Dagger;&lt;/sup&gt;Pronota, NV, VIB Bio-Incubator, Technologiepark 4, B-9052 Zwijnaarde / Ghent, Belgium&lt;/span&gt;&lt;/div&gt;<br /> &lt;div id=&quot;cor1&quot; class=&quot;fm-footnote&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;Correspondence and requests for materials should be addressed to David.R. Bentley (&lt;span class=&quot;email-label&quot;&gt;Email: &lt;/span&gt;&lt;/span&gt;&lt;span class=&quot;e_id4842102&quot;&gt;&lt;a class=&quot;ext-reflink&quot; href=&quot;mailto:dbentley@illumina.com&quot;&gt;&lt;span style=&quot;font-size: small&quot;&gt;dbentley@illumina.com&lt;/span&gt;&lt;/a&gt;&lt;/span&gt;&lt;span style=&quot;font-size: small&quot;&gt; &lt;script language=&quot;JavaScript&quot; type=&quot;text/javascript&quot;&gt;&lt;!--<br /> try{initUnObscureEmail (&quot;e_id4842102&quot;, '&lt;a class=&quot;ext-reflink&quot; href=&quot;' + reverseAndReplaceString('moc.animulli/ta/yeltnebd:otliam', '/at/', '@') + '&quot;&gt;' + reverseAndReplaceString('moc.animulli/ta/yeltnebd', '/at/','@') + '&lt;/a&gt;')}catch(e){}<br /> //--&gt;&lt;/script&gt;)&lt;/span&gt;&lt;/div&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=Solid_sequencing&diff=3414 Solid sequencing 2011-01-16T07:04:43Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;color: #000000&quot;&gt;&lt;b&gt;SOLiD&lt;/b&gt; (Sequencing by Oligonucleotide Ligation and Detection) is a next-generation sequencing technology developed by Life Technologies and has been commercially available since 2008. These next generation technologies generate hundreds of millions to billions of small sequence reads at one time. Well-known examples of such DNA sequencing methods include 454 pyrosequencing (introduced in 2005, generating millions of 200-400bp reads in 2009), the Solexa system (introduced in 2006, generating hundreds of millions of 50-100bp reads in 2009) and the SOLiD system (introduced in 2007, generating billions of 50bp reads in 2009). These methods have reduced the cost from $0.01/base in 2004 to nearly $0.0001/base in 2006 and increased the sequencing capacity from 1,000,000 bases/machine/day in 2004 to more than 5,000,000,000 bases/machine/day in 2009. Over 30 publications exist describing its use first for nucleosome positioning from Valouev et al., transcriptional profiling or strand sensitive RNA-Seq with Cloonan et al.,&lt;sup id=&quot;cite_ref-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[2]&lt;/font&gt;&lt;/sup&gt; single cell transcriptional profiling with Tang et al.&lt;sup id=&quot;cite_ref-2&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[3]&lt;/font&gt;&lt;/sup&gt; and ultimately human resequencing with McKernan et al.&lt;sup id=&quot;cite_ref-3&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;[4]&lt;/font&gt;&lt;/sup&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;color: #000000&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span style=&quot;color: #000000&quot;&gt;&lt;span id=&quot;Chemistry&quot; class=&quot;mw-headline&quot;&gt;Chemistry&lt;/span&gt;&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;span style=&quot;color: #000000&quot;&gt;A library of DNA fragments is prepared from the sample to be sequenced, and are used to prepare clonal bead populations. That is, only one species of fragment will be present on the surface of each magnetic bead. The fragments attached to the magnetic beads will have a universal P1 adapter sequence attached so that the starting sequence of every fragment is both known and identical. Emulsion PCR takes place in microreactors containing all the necessary reagents for PCR. The resulting PCR products attached to the beads are then covalently bound to a glass slide.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;color: #000000&quot;&gt;Primers hybridize to the P1 adapter sequence within the library template. A set of four fluorescently labeled di-base probes compete for ligation to the sequencing primer. Specificity of the di-base probe is achieved by interrogating every 1st and 2nd base in each ligation reaction. Multiple cycles of ligation, detection and cleavage are performed with the number of cycles determining the eventual read length. Following a series of ligation cycles, the extension product is removed and the template is reset with a primer complementary to the n-1 position for a second round of ligation cycles.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;color: #000000&quot;&gt;Five rounds of primer reset are completed for each sequence tag. Through the primer reset process, each base is interrogated in two independent ligation reactions by two different primers. For example, the base at read position 5 is assayed by primer number 2 in ligation cycle 2 and by primer number 3 in ligation cycle 1.&lt;/span&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Throughput_and_Accuracy&quot; class=&quot;mw-headline&quot;&gt;Throughput and Accuracy&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;According to ABI, the SOLiD 3plus platform yields 60 gigabases of usable DNA data per run. Due to the two base encoding system, an inherent accuracy check is built in to the technology and offers 99.94% accuracy. The chemistry of the systems also means that it is not hindered by homopolymers unlike the Roche 454 FLX system and so large and difficult homopolymer repeat regions are no longer a problem to sequence.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Applications&quot; class=&quot;mw-headline&quot;&gt;Applications&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;Naturally the technology will be used to sequence DNA, but because of the high parallel nature of the all next generation technologies they also have applications in transcriptomics and epigenomics.&lt;/p&gt;<br /> &lt;p&gt;Microarrays have been the mainstay of the transcriptomics world for the last ten years and array based technology has branched out to other areas. But they are limited in that only information can be obtained for probes that are on the chip. Only information for organisms for which chips are available can obtained, and they come with all the problems of hybridizing large numbers of molecules (differing hybridizing temperatures).&lt;/p&gt;<br /> &lt;p&gt;Transcriptomics by next gen sequencing will mean these barriers no longer hold true. Any organism's entire transcriptome could be potentially sequenced in one run (for very small bacterial genomes) and not only would the identification of each transcript be available but expression profiling is possible as quantitative reads can also be achieved.&lt;/p&gt;<br /> &lt;p&gt;Chromatin immunoprecipitation (ChIP) is a method for determining transcription factor binding sites and DNA-protein interactions. It has in the past been combined with array technology (ChIP-chip) with some success. Next gen sequencing can also be applied in this area. Methylation immunoprecipitation (MeDIP) can also be performed and also on arrays.&lt;/p&gt;<br /> &lt;p&gt;The ability to learn more about methylation and TF binding sites on a genome wide scale is a valuable resource and could teach us much about disease and molecular biology in general.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;See_also&quot; class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;2 Base Encoding &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;Next-generation sequencing &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;Applied Biosystems &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;Illumina (company) &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;454 Life Sciences &lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;reflist references-small&quot;&gt;<br /> &lt;div class=&quot;references&quot;&gt;<br /> &lt;ol&gt;<br /> &lt;li id=&quot;cite_note-0&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Valouev A, Ichikawa J, Tonthat T, &lt;i&gt;et al.&lt;/i&gt; (July 2008). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2493394&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Research&lt;/i&gt; &lt;b&gt;18&lt;/b&gt; (7): 1051&amp;ndash;63. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1101%2Fgr.076463.108&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1101/gr.076463.108&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18477713&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18477713&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=A+high-resolution%2C+nucleosome+position+map+of+C.+elegans+reveals+a+lack+of+universal+sequence-dictated+positioning&amp;amp;rft.jtitle=Genome+Research&amp;amp;rft.aulast=Valouev+A%2C+Ichikawa+J%2C+Tonthat+T%2C+%27%27et+al.%27%27&amp;amp;rft.au=Valouev+A%2C+Ichikawa+J%2C+Tonthat+T%2C+%27%27et+al.%27%27&amp;amp;rft.date=July+2008&amp;amp;rft.volume=18&amp;amp;rft.issue=7&amp;amp;rft.pages=1051%E2%80%9363&amp;amp;rft_id=info:doi/10.1101%2Fgr.076463.108&amp;amp;rft_id=info:pmid/18477713&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-1&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Cloonan N, Forrest AR, Kolle G, &lt;i&gt;et al.&lt;/i&gt; (July 2008). &amp;quot;Stem cell transcriptome profiling via massive-scale mRNA sequencing&amp;quot;. &lt;i&gt;Nature Methods&lt;/i&gt; &lt;b&gt;5&lt;/b&gt; (7): 613&amp;ndash;9. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2Fnmeth.1223&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/nmeth.1223&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18516046&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18516046&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Stem+cell+transcriptome+profiling+via+massive-scale+mRNA+sequencing&amp;amp;rft.jtitle=Nature+Methods&amp;amp;rft.aulast=Cloonan+N%2C+Forrest+AR%2C+Kolle+G%2C+%27%27et+al.%27%27&amp;amp;rft.au=Cloonan+N%2C+Forrest+AR%2C+Kolle+G%2C+%27%27et+al.%27%27&amp;amp;rft.date=July+2008&amp;amp;rft.volume=5&amp;amp;rft.issue=7&amp;amp;rft.pages=613%E2%80%939&amp;amp;rft_id=info:doi/10.1038%2Fnmeth.1223&amp;amp;rft_id=info:pmid/18516046&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-2&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Tang F, Barbacioru C, Wang Y, &lt;i&gt;et al.&lt;/i&gt; (May 2009). &amp;quot;mRNA-Seq whole-transcriptome analysis of a single cell&amp;quot;. &lt;i&gt;Nature Methods&lt;/i&gt; &lt;b&gt;6&lt;/b&gt; (5): 377&amp;ndash;82. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2Fnmeth.1315&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/nmeth.1315&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19349980&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19349980&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=mRNA-Seq+whole-transcriptome+analysis+of+a+single+cell&amp;amp;rft.jtitle=Nature+Methods&amp;amp;rft.aulast=Tang+F%2C+Barbacioru+C%2C+Wang+Y%2C+%27%27et+al.%27%27&amp;amp;rft.au=Tang+F%2C+Barbacioru+C%2C+Wang+Y%2C+%27%27et+al.%27%27&amp;amp;rft.date=May+2009&amp;amp;rft.volume=6&amp;amp;rft.issue=5&amp;amp;rft.pages=377%E2%80%9382&amp;amp;rft_id=info:doi/10.1038%2Fnmeth.1315&amp;amp;rft_id=info:pmid/19349980&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-3&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-3&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;McKernan KJ, Peckham HE, Costa GL, &lt;i&gt;et al.&lt;/i&gt; (September 2009). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2752135&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Research&lt;/i&gt; &lt;b&gt;19&lt;/b&gt; (9): 1527&amp;ndash;41. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1101%2Fgr.091868.109&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1101/gr.091868.109&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19546169&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19546169&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Sequence+and+structural+variation+in+a+human+genome+uncovered+by+short-read%2C+massively+parallel+ligation+sequencing+using+two-base+encoding&amp;amp;rft.jtitle=Genome+Research&amp;amp;rft.aulast=McKernan+KJ%2C+Peckham+HE%2C+Costa+GL%2C+%27%27et+al.%27%27&amp;amp;rft.au=McKernan+KJ%2C+Peckham+HE%2C+Costa+GL%2C+%27%27et+al.%27%27&amp;amp;rft.date=September+2009&amp;amp;rft.volume=19&amp;amp;rft.issue=9&amp;amp;rft.pages=1527%E2%80%9341&amp;amp;rft_id=info:doi/10.1101%2Fgr.091868.109&amp;amp;rft_id=info:pmid/19546169&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Mardis ER (2008). &amp;quot;Next-generation DNA sequencing methods&amp;quot;. &lt;i&gt;Annual Review of Genomics and Human Genetics&lt;/i&gt; &lt;b&gt;9&lt;/b&gt;: 387&amp;ndash;402. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1146%2Fannurev.genom.9.081307.164359&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1146/annurev.genom.9.081307.164359&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18576944&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18576944&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Next-generation+DNA+sequencing+methods&amp;amp;rft.jtitle=Annual+Review+of+Genomics+and+Human+Genetics&amp;amp;rft.aulast=Mardis+ER&amp;amp;rft.au=Mardis+ER&amp;amp;rft.date=2008&amp;amp;rft.volume=9&amp;amp;rft.pages=387%E2%80%93402&amp;amp;rft_id=info:doi/10.1146%2Fannurev.genom.9.081307.164359&amp;amp;rft_id=info:pmid/18576944&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Mardis ER (2009). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2684661&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;New strategies and emerging technologies for massively parallel sequencing: applications in medical research&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Medicine&lt;/i&gt; &lt;b&gt;1&lt;/b&gt; (4): 40. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1186%2Fgm40&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1186/gm40&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19435481&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19435481&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=New+strategies+and+emerging+technologies+for+massively+parallel+sequencing%3A+applications+in+medical+research&amp;amp;rft.jtitle=Genome+Medicine&amp;amp;rft.aulast=Mardis+ER&amp;amp;rft.au=Mardis+ER&amp;amp;rft.date=2009&amp;amp;rft.volume=1&amp;amp;rft.issue=4&amp;amp;rft.pages=40&amp;amp;rft_id=info:doi/10.1186%2Fgm40&amp;amp;rft_id=info:pmid/19435481&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The SOLiD 3 System: Enabling the Next Generation of Science&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;a title=&quot;Life Technologies&quot; href=&quot;/wiki/Life_Technologies&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt;&lt;/a&gt;. 2009&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved January 27, 2010&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=The+SOLiD+3+System%3A+Enabling+the+Next+Generation+of+Science&amp;amp;rft.atitle=&amp;amp;rft.date=2009&amp;amp;rft.pub=%5B%5BLife+Technologies%5D%5D&amp;amp;rft_id=http%3A%2F%2Fwww3.appliedbiosystems.com%2Fcms%2Fgroups%2Fmcb_marketing%2Fdocuments%2Fgeneraldocuments%2Fcms_061241.pdf&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The SOLiD 3 Plus System&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;a title=&quot;Life Technologies&quot; href=&quot;/wiki/Life_Technologies&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt;&lt;/a&gt;. 2009&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved January 27, 2010&lt;/span&gt;.&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=Solid_sequencing&diff=3413 Solid sequencing 2011-01-16T07:04:03Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;b&gt;SOLiD&lt;/b&gt; (Sequencing by Oligonucleotide Ligation and Detection) is a next-generation sequencing technology developed by &lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt; and has been commercially available since 2008. These next generation technologies generate hundreds of millions to billions of small sequence reads at one time. Well-known examples of such DNA sequencing methods include 454 &lt;font color=&quot;#0645ad&quot;&gt;pyrosequencing&lt;/font&gt; (introduced in 2005, generating millions of 200-400bp reads in 2009), the &lt;font color=&quot;#0645ad&quot;&gt;Solexa&lt;/font&gt; system (introduced in 2006, generating hundreds of millions of 50-100bp reads in 2009) and the SOLiD system (introduced in 2007, generating billions of 50bp reads in 2009). These methods have reduced the cost from $0.01/base in 2004 to nearly $0.0001/base in 2006 and increased the sequencing capacity from 1,000,000 bases/machine/day in 2004 to more than 5,000,000,000 bases/machine/day in 2009. Over 30 publications exist describing its use first for nucleosome positioning from Valouev et al.,&lt;sup id=&quot;cite_ref-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;&lt;span&gt;[&lt;/span&gt;1&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt; transcriptional profiling or strand sensitive RNA-Seq with Cloonan et al.,&lt;sup id=&quot;cite_ref-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;&lt;span&gt;[&lt;/span&gt;2&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt; single cell transcriptional profiling with Tang et al.&lt;sup id=&quot;cite_ref-2&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;&lt;span&gt;[&lt;/span&gt;3&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt; and ultimately human resequencing with McKernan et al.&lt;sup id=&quot;cite_ref-3&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;&lt;span&gt;[&lt;/span&gt;4&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Chemistry&quot; class=&quot;mw-headline&quot;&gt;Chemistry&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;A library of DNA fragments is prepared from the sample to be sequenced, and are used to prepare clonal bead populations. That is, only one species of fragment will be present on the surface of each magnetic bead. The fragments attached to the magnetic beads will have a universal P1 adapter sequence attached so that the starting sequence of every fragment is both known and identical. Emulsion &lt;font color=&quot;#0645ad&quot;&gt;PCR&lt;/font&gt; takes place in microreactors containing all the necessary reagents for PCR. The resulting PCR products attached to the beads are then covalently bound to a glass slide.&lt;/p&gt;<br /> &lt;p&gt;Primers hybridize to the P1 adapter sequence within the library template. A set of four fluorescently labeled di-base probes compete for ligation to the sequencing primer. Specificity of the di-base probe is achieved by interrogating every 1st and 2nd base in each ligation reaction. Multiple cycles of ligation, detection and cleavage are performed with the number of cycles determining the eventual read length. Following a series of ligation cycles, the extension product is removed and the template is reset with a primer complementary to the n-1 position for a second round of ligation cycles.&lt;/p&gt;<br /> &lt;p&gt;Five rounds of primer reset are completed for each sequence tag. Through the primer reset process, each base is interrogated in two independent ligation reactions by two different primers. For example, the base at read position 5 is assayed by primer number 2 in ligation cycle 2 and by primer number 3 in ligation cycle 1.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Throughput_and_Accuracy&quot; class=&quot;mw-headline&quot;&gt;Throughput and Accuracy&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;According to ABI, the SOLiD 3plus platform yields 60 gigabases of usable DNA data per run. Due to the two base encoding system, an inherent accuracy check is built in to the technology and offers 99.94% accuracy. The chemistry of the systems also means that it is not hindered by homopolymers unlike the Roche 454 FLX system and so large and difficult homopolymer repeat regions are no longer a problem to sequence.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Applications&quot; class=&quot;mw-headline&quot;&gt;Applications&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;Naturally the technology will be used to sequence DNA, but because of the high parallel nature of the all next generation technologies they also have applications in transcriptomics and epigenomics.&lt;/p&gt;<br /> &lt;p&gt;Microarrays have been the mainstay of the transcriptomics world for the last ten years and array based technology has branched out to other areas. But they are limited in that only information can be obtained for probes that are on the chip. Only information for organisms for which chips are available can obtained, and they come with all the problems of hybridizing large numbers of molecules (differing hybridizing temperatures).&lt;/p&gt;<br /> &lt;p&gt;Transcriptomics by next gen sequencing will mean these barriers no longer hold true. Any organism's entire transcriptome could be potentially sequenced in one run (for very small bacterial genomes) and not only would the identification of each transcript be available but expression profiling is possible as quantitative reads can also be achieved.&lt;/p&gt;<br /> &lt;p&gt;Chromatin immunoprecipitation (ChIP) is a method for determining transcription factor binding sites and DNA-protein interactions. It has in the past been combined with array technology (ChIP-chip) with some success. Next gen sequencing can also be applied in this area. Methylation immunoprecipitation (MeDIP) can also be performed and also on arrays.&lt;/p&gt;<br /> &lt;p&gt;The ability to learn more about methylation and TF binding sites on a genome wide scale is a valuable resource and could teach us much about disease and molecular biology in general.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;See_also&quot; class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;2 Base Encoding &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;Next-generation sequencing &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;Applied Biosystems &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;Illumina (company) &lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span style=&quot;color: #000000&quot;&gt;454 Life Sciences &lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;reflist references-small&quot;&gt;<br /> &lt;div class=&quot;references&quot;&gt;<br /> &lt;ol&gt;<br /> &lt;li id=&quot;cite_note-0&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Valouev A, Ichikawa J, Tonthat T, &lt;i&gt;et al.&lt;/i&gt; (July 2008). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2493394&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Research&lt;/i&gt; &lt;b&gt;18&lt;/b&gt; (7): 1051&amp;ndash;63. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1101%2Fgr.076463.108&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1101/gr.076463.108&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18477713&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18477713&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=A+high-resolution%2C+nucleosome+position+map+of+C.+elegans+reveals+a+lack+of+universal+sequence-dictated+positioning&amp;amp;rft.jtitle=Genome+Research&amp;amp;rft.aulast=Valouev+A%2C+Ichikawa+J%2C+Tonthat+T%2C+%27%27et+al.%27%27&amp;amp;rft.au=Valouev+A%2C+Ichikawa+J%2C+Tonthat+T%2C+%27%27et+al.%27%27&amp;amp;rft.date=July+2008&amp;amp;rft.volume=18&amp;amp;rft.issue=7&amp;amp;rft.pages=1051%E2%80%9363&amp;amp;rft_id=info:doi/10.1101%2Fgr.076463.108&amp;amp;rft_id=info:pmid/18477713&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-1&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Cloonan N, Forrest AR, Kolle G, &lt;i&gt;et al.&lt;/i&gt; (July 2008). &amp;quot;Stem cell transcriptome profiling via massive-scale mRNA sequencing&amp;quot;. &lt;i&gt;Nature Methods&lt;/i&gt; &lt;b&gt;5&lt;/b&gt; (7): 613&amp;ndash;9. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2Fnmeth.1223&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/nmeth.1223&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18516046&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18516046&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Stem+cell+transcriptome+profiling+via+massive-scale+mRNA+sequencing&amp;amp;rft.jtitle=Nature+Methods&amp;amp;rft.aulast=Cloonan+N%2C+Forrest+AR%2C+Kolle+G%2C+%27%27et+al.%27%27&amp;amp;rft.au=Cloonan+N%2C+Forrest+AR%2C+Kolle+G%2C+%27%27et+al.%27%27&amp;amp;rft.date=July+2008&amp;amp;rft.volume=5&amp;amp;rft.issue=7&amp;amp;rft.pages=613%E2%80%939&amp;amp;rft_id=info:doi/10.1038%2Fnmeth.1223&amp;amp;rft_id=info:pmid/18516046&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-2&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Tang F, Barbacioru C, Wang Y, &lt;i&gt;et al.&lt;/i&gt; (May 2009). &amp;quot;mRNA-Seq whole-transcriptome analysis of a single cell&amp;quot;. &lt;i&gt;Nature Methods&lt;/i&gt; &lt;b&gt;6&lt;/b&gt; (5): 377&amp;ndash;82. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1038%2Fnmeth.1315&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/nmeth.1315&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19349980&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19349980&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=mRNA-Seq+whole-transcriptome+analysis+of+a+single+cell&amp;amp;rft.jtitle=Nature+Methods&amp;amp;rft.aulast=Tang+F%2C+Barbacioru+C%2C+Wang+Y%2C+%27%27et+al.%27%27&amp;amp;rft.au=Tang+F%2C+Barbacioru+C%2C+Wang+Y%2C+%27%27et+al.%27%27&amp;amp;rft.date=May+2009&amp;amp;rft.volume=6&amp;amp;rft.issue=5&amp;amp;rft.pages=377%E2%80%9382&amp;amp;rft_id=info:doi/10.1038%2Fnmeth.1315&amp;amp;rft_id=info:pmid/19349980&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-3&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-3&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;McKernan KJ, Peckham HE, Costa GL, &lt;i&gt;et al.&lt;/i&gt; (September 2009). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2752135&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Research&lt;/i&gt; &lt;b&gt;19&lt;/b&gt; (9): 1527&amp;ndash;41. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1101%2Fgr.091868.109&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1101/gr.091868.109&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19546169&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19546169&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Sequence+and+structural+variation+in+a+human+genome+uncovered+by+short-read%2C+massively+parallel+ligation+sequencing+using+two-base+encoding&amp;amp;rft.jtitle=Genome+Research&amp;amp;rft.aulast=McKernan+KJ%2C+Peckham+HE%2C+Costa+GL%2C+%27%27et+al.%27%27&amp;amp;rft.au=McKernan+KJ%2C+Peckham+HE%2C+Costa+GL%2C+%27%27et+al.%27%27&amp;amp;rft.date=September+2009&amp;amp;rft.volume=19&amp;amp;rft.issue=9&amp;amp;rft.pages=1527%E2%80%9341&amp;amp;rft_id=info:doi/10.1101%2Fgr.091868.109&amp;amp;rft_id=info:pmid/19546169&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Mardis ER (2008). &amp;quot;Next-generation DNA sequencing methods&amp;quot;. &lt;i&gt;Annual Review of Genomics and Human Genetics&lt;/i&gt; &lt;b&gt;9&lt;/b&gt;: 387&amp;ndash;402. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1146%2Fannurev.genom.9.081307.164359&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1146/annurev.genom.9.081307.164359&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18576944&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18576944&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Next-generation+DNA+sequencing+methods&amp;amp;rft.jtitle=Annual+Review+of+Genomics+and+Human+Genetics&amp;amp;rft.aulast=Mardis+ER&amp;amp;rft.au=Mardis+ER&amp;amp;rft.date=2008&amp;amp;rft.volume=9&amp;amp;rft.pages=387%E2%80%93402&amp;amp;rft_id=info:doi/10.1146%2Fannurev.genom.9.081307.164359&amp;amp;rft_id=info:pmid/18576944&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Mardis ER (2009). &lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2684661&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;New strategies and emerging technologies for massively parallel sequencing: applications in medical research&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Medicine&lt;/i&gt; &lt;b&gt;1&lt;/b&gt; (4): 40. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://dx.doi.org/10.1186%2Fgm40&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1186/gm40&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19435481&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19435481&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=New+strategies+and+emerging+technologies+for+massively+parallel+sequencing%3A+applications+in+medical+research&amp;amp;rft.jtitle=Genome+Medicine&amp;amp;rft.aulast=Mardis+ER&amp;amp;rft.au=Mardis+ER&amp;amp;rft.date=2009&amp;amp;rft.volume=1&amp;amp;rft.issue=4&amp;amp;rft.pages=40&amp;amp;rft_id=info:doi/10.1186%2Fgm40&amp;amp;rft_id=info:pmid/19435481&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The SOLiD 3 System: Enabling the Next Generation of Science&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;a title=&quot;Life Technologies&quot; href=&quot;/wiki/Life_Technologies&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt;&lt;/a&gt;. 2009&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved January 27, 2010&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=The+SOLiD+3+System%3A+Enabling+the+Next+Generation+of+Science&amp;amp;rft.atitle=&amp;amp;rft.date=2009&amp;amp;rft.pub=%5B%5BLife+Technologies%5D%5D&amp;amp;rft_id=http%3A%2F%2Fwww3.appliedbiosystems.com%2Fcms%2Fgroups%2Fmcb_marketing%2Fdocuments%2Fgeneraldocuments%2Fcms_061241.pdf&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; rel=&quot;nofollow&quot; href=&quot;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The SOLiD 3 Plus System&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;a title=&quot;Life Technologies&quot; href=&quot;/wiki/Life_Technologies&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt;&lt;/a&gt;. 2009&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; rel=&quot;nofollow&quot; href=&quot;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved January 27, 2010&lt;/span&gt;.&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=Solid_sequencing&diff=3412 Solid sequencing 2011-01-16T07:03:42Z <p>WikiSysop: Created page with &quot;&lt;p&gt;&lt;b&gt;SOLiD&lt;/b&gt; (Sequencing by Oligonucleotide Ligation and Detection) is a next-generation sequencing technology developed by &lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt; and ...&quot;</p> <hr /> <div>&lt;p&gt;&lt;b&gt;SOLiD&lt;/b&gt; (Sequencing by Oligonucleotide Ligation and Detection) is a next-generation sequencing technology developed by &lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt; and has been commercially available since 2008. These next generation technologies generate hundreds of millions to billions of small sequence reads at one time. Well-known examples of such DNA sequencing methods include 454 &lt;font color=&quot;#0645ad&quot;&gt;pyrosequencing&lt;/font&gt; (introduced in 2005, generating millions of 200-400bp reads in 2009), the &lt;font color=&quot;#0645ad&quot;&gt;Solexa&lt;/font&gt; system (introduced in 2006, generating hundreds of millions of 50-100bp reads in 2009) and the SOLiD system (introduced in 2007, generating billions of 50bp reads in 2009). These methods have reduced the cost from $0.01/base in 2004 to nearly $0.0001/base in 2006 and increased the sequencing capacity from 1,000,000 bases/machine/day in 2004 to more than 5,000,000,000 bases/machine/day in 2009. Over 30 publications exist describing its use first for nucleosome positioning from Valouev et al.,&lt;sup id=&quot;cite_ref-0&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;&lt;span&gt;[&lt;/span&gt;1&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt; transcriptional profiling or strand sensitive RNA-Seq with Cloonan et al.,&lt;sup id=&quot;cite_ref-1&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;&lt;span&gt;[&lt;/span&gt;2&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt; single cell transcriptional profiling with Tang et al.&lt;sup id=&quot;cite_ref-2&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;&lt;span&gt;[&lt;/span&gt;3&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt; and ultimately human resequencing with McKernan et al.&lt;sup id=&quot;cite_ref-3&quot; class=&quot;reference&quot;&gt;&lt;font size=&quot;2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;&lt;span&gt;[&lt;/span&gt;4&lt;span&gt;]&lt;/span&gt;&lt;/font&gt;&lt;/font&gt;&lt;/sup&gt;&lt;/p&gt;<br /> &lt;p&gt;<br /> &lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Chemistry&quot; class=&quot;mw-headline&quot;&gt;Chemistry&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;A library of DNA fragments is prepared from the sample to be sequenced, and are used to prepare clonal bead populations. That is, only one species of fragment will be present on the surface of each magnetic bead. The fragments attached to the magnetic beads will have a universal P1 adapter sequence attached so that the starting sequence of every fragment is both known and identical. Emulsion &lt;font color=&quot;#0645ad&quot;&gt;PCR&lt;/font&gt; takes place in microreactors containing all the necessary reagents for PCR. The resulting PCR products attached to the beads are then covalently bound to a glass slide.&lt;/p&gt;<br /> &lt;p&gt;Primers hybridize to the P1 adapter sequence within the library template. A set of four fluorescently labeled di-base probes compete for ligation to the sequencing primer. Specificity of the di-base probe is achieved by interrogating every 1st and 2nd base in each ligation reaction. Multiple cycles of ligation, detection and cleavage are performed with the number of cycles determining the eventual read length. Following a series of ligation cycles, the extension product is removed and the template is reset with a primer complementary to the n-1 position for a second round of ligation cycles.&lt;/p&gt;<br /> &lt;p&gt;Five rounds of primer reset are completed for each sequence tag. Through the primer reset process, each base is interrogated in two independent ligation reactions by two different primers. For example, the base at read position 5 is assayed by primer number 2 in ligation cycle 2 and by primer number 3 in ligation cycle 1.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Throughput_and_Accuracy&quot; class=&quot;mw-headline&quot;&gt;Throughput and Accuracy&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;According to ABI, the SOLiD 3plus platform yields 60 gigabases of usable DNA data per run. Due to the two base encoding system, an inherent accuracy check is built in to the technology and offers 99.94% accuracy. The chemistry of the systems also means that it is not hindered by homopolymers unlike the Roche 454 FLX system and so large and difficult homopolymer repeat regions are no longer a problem to sequence.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Applications&quot; class=&quot;mw-headline&quot;&gt;Applications&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;Naturally the technology will be used to sequence DNA, but because of the high parallel nature of the all next generation technologies they also have applications in transcriptomics and epigenomics.&lt;/p&gt;<br /> &lt;p&gt;Microarrays have been the mainstay of the transcriptomics world for the last ten years and array based technology has branched out to other areas. But they are limited in that only information can be obtained for probes that are on the chip. Only information for organisms for which chips are available can obtained, and they come with all the problems of hybridizing large numbers of molecules (differing hybridizing temperatures).&lt;/p&gt;<br /> &lt;p&gt;Transcriptomics by next gen sequencing will mean these barriers no longer hold true. Any organism's entire transcriptome could be potentially sequenced in one run (for very small bacterial genomes) and not only would the identification of each transcript be available but expression profiling is possible as quantitative reads can also be achieved.&lt;/p&gt;<br /> &lt;p&gt;Chromatin immunoprecipitation (ChIP) is a method for determining transcription factor binding sites and DNA-protein interactions. It has in the past been combined with array technology (ChIP-chip) with some success. Next gen sequencing can also be applied in this area. Methylation immunoprecipitation (MeDIP) can also be performed and also on arrays.&lt;/p&gt;<br /> &lt;p&gt;The ability to learn more about methylation and TF binding sites on a genome wide scale is a valuable resource and could teach us much about disease and molecular biology in general.&lt;/p&gt;<br /> &lt;h2&gt;&lt;span id=&quot;See_also&quot; class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;a title=&quot;2 Base Encoding&quot; href=&quot;/wiki/2_Base_Encoding&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;2 Base Encoding&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a class=&quot;mw-redirect&quot; title=&quot;Next-generation sequencing&quot; href=&quot;/wiki/Next-generation_sequencing&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Next-generation sequencing&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a title=&quot;Applied Biosystems&quot; href=&quot;/wiki/Applied_Biosystems&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Applied Biosystems&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a title=&quot;Illumina (company)&quot; href=&quot;/wiki/Illumina_(company)&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Illumina (company)&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;a title=&quot;454 Life Sciences&quot; href=&quot;/wiki/454_Life_Sciences&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;454 Life Sciences&lt;/font&gt;&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;References&quot; class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;reflist references-small&quot;&gt;<br /> &lt;div class=&quot;references&quot;&gt;<br /> &lt;ol&gt;<br /> &lt;li id=&quot;cite_note-0&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-0&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Valouev A, Ichikawa J, Tonthat T, &lt;i&gt;et al.&lt;/i&gt; (July 2008). &lt;a class=&quot;external text&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2493394&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Research&lt;/i&gt; &lt;b&gt;18&lt;/b&gt; (7): 1051&amp;ndash;63. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1101%2Fgr.076463.108&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1101/gr.076463.108&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18477713&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18477713&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=A+high-resolution%2C+nucleosome+position+map+of+C.+elegans+reveals+a+lack+of+universal+sequence-dictated+positioning&amp;amp;rft.jtitle=Genome+Research&amp;amp;rft.aulast=Valouev+A%2C+Ichikawa+J%2C+Tonthat+T%2C+%27%27et+al.%27%27&amp;amp;rft.au=Valouev+A%2C+Ichikawa+J%2C+Tonthat+T%2C+%27%27et+al.%27%27&amp;amp;rft.date=July+2008&amp;amp;rft.volume=18&amp;amp;rft.issue=7&amp;amp;rft.pages=1051%E2%80%9363&amp;amp;rft_id=info:doi/10.1101%2Fgr.076463.108&amp;amp;rft_id=info:pmid/18477713&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-1&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-1&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Cloonan N, Forrest AR, Kolle G, &lt;i&gt;et al.&lt;/i&gt; (July 2008). &amp;quot;Stem cell transcriptome profiling via massive-scale mRNA sequencing&amp;quot;. &lt;i&gt;Nature Methods&lt;/i&gt; &lt;b&gt;5&lt;/b&gt; (7): 613&amp;ndash;9. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1038%2Fnmeth.1223&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/nmeth.1223&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18516046&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18516046&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Stem+cell+transcriptome+profiling+via+massive-scale+mRNA+sequencing&amp;amp;rft.jtitle=Nature+Methods&amp;amp;rft.aulast=Cloonan+N%2C+Forrest+AR%2C+Kolle+G%2C+%27%27et+al.%27%27&amp;amp;rft.au=Cloonan+N%2C+Forrest+AR%2C+Kolle+G%2C+%27%27et+al.%27%27&amp;amp;rft.date=July+2008&amp;amp;rft.volume=5&amp;amp;rft.issue=7&amp;amp;rft.pages=613%E2%80%939&amp;amp;rft_id=info:doi/10.1038%2Fnmeth.1223&amp;amp;rft_id=info:pmid/18516046&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-2&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-2&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;Tang F, Barbacioru C, Wang Y, &lt;i&gt;et al.&lt;/i&gt; (May 2009). &amp;quot;mRNA-Seq whole-transcriptome analysis of a single cell&amp;quot;. &lt;i&gt;Nature Methods&lt;/i&gt; &lt;b&gt;6&lt;/b&gt; (5): 377&amp;ndash;82. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1038%2Fnmeth.1315&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1038/nmeth.1315&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19349980&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19349980&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=mRNA-Seq+whole-transcriptome+analysis+of+a+single+cell&amp;amp;rft.jtitle=Nature+Methods&amp;amp;rft.aulast=Tang+F%2C+Barbacioru+C%2C+Wang+Y%2C+%27%27et+al.%27%27&amp;amp;rft.au=Tang+F%2C+Barbacioru+C%2C+Wang+Y%2C+%27%27et+al.%27%27&amp;amp;rft.date=May+2009&amp;amp;rft.volume=6&amp;amp;rft.issue=5&amp;amp;rft.pages=377%E2%80%9382&amp;amp;rft_id=info:doi/10.1038%2Fnmeth.1315&amp;amp;rft_id=info:pmid/19349980&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li id=&quot;cite_note-3&quot;&gt;&lt;b&gt;&lt;a href=&quot;#cite_ref-3&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;^&lt;/font&gt;&lt;/a&gt;&lt;/b&gt; &lt;span class=&quot;citation Journal&quot;&gt;McKernan KJ, Peckham HE, Costa GL, &lt;i&gt;et al.&lt;/i&gt; (September 2009). &lt;a class=&quot;external text&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2752135&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Research&lt;/i&gt; &lt;b&gt;19&lt;/b&gt; (9): 1527&amp;ndash;41. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1101%2Fgr.091868.109&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1101/gr.091868.109&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19546169&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19546169&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Sequence+and+structural+variation+in+a+human+genome+uncovered+by+short-read%2C+massively+parallel+ligation+sequencing+using+two-base+encoding&amp;amp;rft.jtitle=Genome+Research&amp;amp;rft.aulast=McKernan+KJ%2C+Peckham+HE%2C+Costa+GL%2C+%27%27et+al.%27%27&amp;amp;rft.au=McKernan+KJ%2C+Peckham+HE%2C+Costa+GL%2C+%27%27et+al.%27%27&amp;amp;rft.date=September+2009&amp;amp;rft.volume=19&amp;amp;rft.issue=9&amp;amp;rft.pages=1527%E2%80%9341&amp;amp;rft_id=info:doi/10.1101%2Fgr.091868.109&amp;amp;rft_id=info:pmid/19546169&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;h2&gt;&lt;span id=&quot;Further_reading&quot; class=&quot;mw-headline&quot;&gt;Further reading&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Mardis ER (2008). &amp;quot;Next-generation DNA sequencing methods&amp;quot;. &lt;i&gt;Annual Review of Genomics and Human Genetics&lt;/i&gt; &lt;b&gt;9&lt;/b&gt;: 387&amp;ndash;402. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1146%2Fannurev.genom.9.081307.164359&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1146/annurev.genom.9.081307.164359&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/18576944&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;18576944&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=Next-generation+DNA+sequencing+methods&amp;amp;rft.jtitle=Annual+Review+of+Genomics+and+Human+Genetics&amp;amp;rft.aulast=Mardis+ER&amp;amp;rft.au=Mardis+ER&amp;amp;rft.date=2008&amp;amp;rft.volume=9&amp;amp;rft.pages=387%E2%80%93402&amp;amp;rft_id=info:doi/10.1146%2Fannurev.genom.9.081307.164359&amp;amp;rft_id=info:pmid/18576944&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation Journal&quot;&gt;Mardis ER (2009). &lt;a class=&quot;external text&quot; href=&quot;http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&amp;amp;artid=2684661&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;New strategies and emerging technologies for massively parallel sequencing: applications in medical research&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;i&gt;Genome Medicine&lt;/i&gt; &lt;b&gt;1&lt;/b&gt; (4): 40. &lt;a title=&quot;Digital object identifier&quot; href=&quot;/wiki/Digital_object_identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;doi&lt;/font&gt;&lt;/a&gt;:&lt;a class=&quot;external text&quot; href=&quot;http://dx.doi.org/10.1186%2Fgm40&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;10.1186/gm40&lt;/font&gt;&lt;/a&gt;. &lt;a class=&quot;mw-redirect&quot; title=&quot;PubMed Identifier&quot; href=&quot;/wiki/PubMed_Identifier&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;PMID&lt;/font&gt;&lt;/a&gt;&amp;nbsp;&lt;a class=&quot;external text&quot; href=&quot;http://www.ncbi.nlm.nih.gov/pubmed/19435481&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;19435481&lt;/font&gt;&lt;/a&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;amp;rft.genre=article&amp;amp;rft.atitle=New+strategies+and+emerging+technologies+for+massively+parallel+sequencing%3A+applications+in+medical+research&amp;amp;rft.jtitle=Genome+Medicine&amp;amp;rft.aulast=Mardis+ER&amp;amp;rft.au=Mardis+ER&amp;amp;rft.date=2009&amp;amp;rft.volume=1&amp;amp;rft.issue=4&amp;amp;rft.pages=40&amp;amp;rft_id=info:doi/10.1186%2Fgm40&amp;amp;rft_id=info:pmid/19435481&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;h2&gt;&lt;span id=&quot;External_links&quot; class=&quot;mw-headline&quot;&gt;External links&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; href=&quot;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The SOLiD 3 System: Enabling the Next Generation of Science&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;a title=&quot;Life Technologies&quot; href=&quot;/wiki/Life_Technologies&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt;&lt;/a&gt;. 2009&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; href=&quot;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_061241.pdf&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved January 27, 2010&lt;/span&gt;.&lt;/span&gt;&lt;span class=&quot;Z3988&quot; title=&quot;ctx_ver=Z39.88-2004&amp;amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;amp;rft.genre=bookitem&amp;amp;rft.btitle=The+SOLiD+3+System%3A+Enabling+the+Next+Generation+of+Science&amp;amp;rft.atitle=&amp;amp;rft.date=2009&amp;amp;rft.pub=%5B%5BLife+Technologies%5D%5D&amp;amp;rft_id=http%3A%2F%2Fwww3.appliedbiosystems.com%2Fcms%2Fgroups%2Fmcb_marketing%2Fdocuments%2Fgeneraldocuments%2Fcms_061241.pdf&amp;amp;rfr_id=info:sid/en.wikipedia.org:ABI_Solid_Sequencing&quot;&gt;&lt;span style=&quot;display: none&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;span class=&quot;citation web&quot;&gt;&lt;a class=&quot;external text&quot; href=&quot;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;&amp;quot;The SOLiD 3 Plus System&amp;quot;&lt;/font&gt;&lt;/a&gt;. &lt;a title=&quot;Life Technologies&quot; href=&quot;/wiki/Life_Technologies&quot;&gt;&lt;font color=&quot;#0645ad&quot;&gt;Life Technologies&lt;/font&gt;&lt;/a&gt;. 2009&lt;span class=&quot;printonly&quot;&gt;. &lt;a class=&quot;external free&quot; href=&quot;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&quot; rel=&quot;nofollow&quot;&gt;&lt;font color=&quot;#3366bb&quot;&gt;http://marketing.appliedbiosystems.com/mk/get/SOLID_ACCURACY_Landing?CID=BN-88889-NAHomePage&lt;/font&gt;&lt;/a&gt;&lt;/span&gt;&lt;span class=&quot;reference-accessdate&quot;&gt;. Retrieved January 27, 2010&lt;/span&gt;.&lt;/span&gt;&lt;/li&gt;<br /> &lt;/ul&gt;</div> WikiSysop http://Genomics.org/index.php?title=DNA_reads&diff=3411 DNA reads 2011-01-16T07:01:45Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;Diagram showing Solexa paired end DNA reads.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;[[File:Paied end sequence read openfree.png]]&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;b&gt;Related words.&lt;/b&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;[[Sequencing]]&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=DNA_reads&diff=3410 DNA reads 2011-01-16T07:01:37Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;Diagram showing Solexa paired end DNA reads.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;[[File:Paied end sequence read openfree.png]]&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;b&gt;Related words.&lt;/b&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;[[Sequencing]]&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=DNA_reads&diff=3409 DNA reads 2011-01-16T07:00:57Z <p>WikiSysop: Created page with &quot;&lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;Diagram showing Solexa paired end DNA reads.&lt;/span&gt;&lt;/p&gt; &lt;p&gt;File:Paied end sequence read openfree.png&lt;/p&gt;&quot;</p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: large&quot;&gt;Diagram showing Solexa paired end DNA reads.&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;[[File:Paied end sequence read openfree.png]]&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=File:Paied_end_sequence_read_openfree.png&diff=3408 File:Paied end sequence read openfree.png 2011-01-16T07:00:17Z <p>WikiSysop: </p> <hr /> <div></div> WikiSysop http://Genomics.org/index.php?title=Sequencing&diff=3407 Sequencing 2011-01-16T07:00:04Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;font size=&quot;4&quot;&gt;[[Sequencing technology]]&lt;br /&gt;<br /> [[Sequencing companies]]&lt;br /&gt;<br /> [[Sequencing assembly program]]&lt;br /&gt;<br /> &lt;/font&gt;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &amp;nbsp;&lt;/p&gt;<br /> &lt;hr /&gt;<br /> &lt;p&gt;&lt;font size=&quot;6&quot;&gt;What is sequencing?&lt;br /&gt;<br /> &lt;font size=&quot;3&quot;&gt;Sequencing means to determine the order of signals in a polymer.&lt;/font&gt;&amp;nbsp;&lt;br /&gt;<br /> &lt;br /&gt;<br /> &lt;/font&gt;&lt;font size=&quot;3&quot;&gt;In genetics and biochemistry, &lt;strong&gt;sequencing&lt;/strong&gt; means to determine the primary structure (sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a &lt;strong&gt;sequence&lt;/strong&gt; which succinctly summarizes much of the atomic-level structure of the sequenced molecule. &lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span class=&quot;mw-headline&quot;&gt;[[DNA sequencing]]&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;DNA sequencing is the process of determining the nucleotide order of a given &lt;font color=&quot;#810081&quot;&gt;DNA&lt;/font&gt; fragment. Thus far, most DNA sequencing has been performed using the chain termination method developed by Frederick Sanger. This technique uses sequence-specific termination of a DNA synthesis reaction using modified nucleotide substrates. However, new sequencing technologies such as Pyrosequencing are gaining an increasing share of the sequencing market. More genome data is being produced by pyrosequencing than Sanger DNA sequencing these days. Pyrosequencing has enabled rapid genome sequencing. Bacterial genome can be sequenced in a single run with several X coverage with this technique. This technique was also used to sequence the genome of James Watson recently.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;The sequence of DNA encodes the necessary information for living things to survive and reproduce. Determining the sequence is therefore useful in 'pure' research into why and how organisms live, as well as in applied subjects. Because of the key nature of DNA to living things, knowledge of DNA sequence may come in useful in practically any biological research. For example, in medicine it can be used to identify, diagnose and potentially develop treatments for genetic diseases. Similarly, research into pathogens may lead to treatments for contagious diseases. Biotechnology is a burgeoning discipline, with the potential for many useful products and services.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h3&gt;&lt;span class=&quot;mw-headline&quot;&gt;Sanger sequencing&lt;/span&gt;&lt;/h3&gt;<br /> &lt;div class=&quot;thumb tright&quot;&gt;<br /> &lt;div style=&quot;width: 162px&quot; class=&quot;thumbinner&quot;&gt;&lt;img class=&quot;thumbimage&quot; border=&quot;0&quot; alt=&quot;Part of a radioactively labelled sequencing gel&quot; width=&quot;160&quot; height=&quot;332&quot; src=&quot;http://upload.wikimedia.org/wikipedia/commons/c/cb/Sequencing.jpg&quot; /&gt;<br /> &lt;div class=&quot;thumbcaption&quot;&gt;<br /> &lt;div style=&quot;float: right&quot; class=&quot;magnify&quot;&gt;&lt;img alt=&quot;&quot; width=&quot;15&quot; height=&quot;11&quot; src=&quot;http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png&quot; /&gt;&lt;/div&gt;<br /> Part of a radioactively labelled sequencing gel&lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;In chain terminator sequencing (Sanger sequencing), extension is initiated at a specific site on the template DNA by using a short oligonucleotide 'primer' complementary to the template at that region. The oligonucleotide primer is extended using a DNA polymerase, an enzyme that replicates DNA. Included with the primer and DNA polymerase are the four deoxynucleotide bases (DNA building blocks), along with a low concentration of a chain terminating nucleotide (most commonly a &lt;strong&gt;di-&lt;/strong&gt;deoxynucleotide). Limited incorporation of the chain terminating nucleotide by the DNA polymerase results in a series of related DNA fragments that are terminated only at positions where that particular nucleotide is used. The fragments are then size-separated by electrophoresis in a slab polyacrylamide gel, or more commonly now, in a narrow glass tube (capillary) filled with a viscous polymer.&lt;/font&gt;&lt;/p&gt;<br /> &lt;div class=&quot;thumb tright&quot;&gt;<br /> &lt;div style=&quot;width: 182px&quot; class=&quot;thumbinner&quot;&gt;&lt;img class=&quot;thumbimage&quot; border=&quot;0&quot; alt=&quot;View of the start of an example dye-terminator read (click to expand)&quot; width=&quot;180&quot; height=&quot;42&quot; src=&quot;http://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Sanger_sequencing_read_display.gif/180px-Sanger_sequencing_read_display.gif&quot; /&gt;<br /> &lt;div class=&quot;thumbcaption&quot;&gt;<br /> &lt;div style=&quot;float: right&quot; class=&quot;magnify&quot;&gt;&lt;img alt=&quot;&quot; width=&quot;15&quot; height=&quot;11&quot; src=&quot;http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png&quot; /&gt;&lt;/div&gt;<br /> View of the start of an example dye-terminator read (click to expand)&lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;/div&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;An alternative to the labelling of the primer is to label the terminators instead, commonly called 'dye terminator sequencing'. The major advantage of this approach is the complete sequencing set can be performed in a single reaction, rather than the four needed with the labeled-primer approach. This is accomplished by labelling each of the dideoxynucleotide chain-terminators with a separate fluorescent dye, which fluoresces at a different wavelength. This method is easier and quicker than the dye primer approach, but may produce more uneven data peaks (different heights), due to a template dependent difference in the incorporation of the large dye chain-terminators. This problem has been significantly reduced with the introduction of new enzymes and dyes that minimize incorporation variability.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;This method is now used for the vast majority of sequencing reactions as it is both simpler and cheaper. The major reason for this is that the primers do not have to be separately labelled (which can be a significant expense for a single-use custom primer), although this is less of a concern with frequently used 'universal' primers.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h3&gt;&lt;span class=&quot;mw-headline&quot;&gt;Pyrosequencing&lt;/span&gt;&lt;/h3&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;Pyrosequencing, which was originally developed by Mostafa Ronaghi, has been commercialized by Biotage (for low throughput sequencing) and 454 Life Sciences (for high-throughput sequencing). The latter platform sequences roughly 100 megabases in a 7-hour run with a single machine. In the array-based method (commercialized by 454 Life Sciences), single-stranded DNA is annealed to beads and amplified via emPCR. These DNA-bound beads are then placed into wells on a fiber-optic chip along with enzymes which produce light in the presence of ATP. When free nucleotides are washed over this chip, light is produced as ATP is generated when nucleotides join with their complementary base pairs. Addition of one (or more) nucleotide(s) results in a reaction that generates a light signal that is recorded by the CCD camera in the instrument. The signal strength is proportional to the number of nucleotides, for example, homopolymer stretches, incorporated in a single nucleotide flow. [1]&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;&lt;b&gt;Synthesis based sequencing by Illumina&lt;/b&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;Solexa, now part of Illumina developed a sequencing technology based on reversible dye-terminators. DNA molecules are first attached to primers on a slide and amplified so that local clonal colonies are formed (bridge amplification). Four types of ddNTPs are added, and non-incorporated nucleotides are washed away. Unlike pyrosequencing, the DNA can only be extended one nucleotide at a time. A camera takes images of the fluorescently labeled nucleotides then the dye along with the terminal 3' blocker is chemically removed from the DNA, allowing a next cycle. The final product of the SBS is many [[DNA reads]].&lt;/font&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span class=&quot;mw-headline&quot;&gt;RNA sequencing&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;&lt;font color=&quot;#810081&quot;&gt;RNA&lt;/font&gt; is less stable in the cell, and also more prone to nuclease attack experimentally. As RNA is generated by transcription from DNA, the information is already present in the cell's DNA. However, it is sometimes desirable to sequence RNA molecules. In particular, in Eukaryotes RNA molecules are not necessarily co-linear with their DNA template, as introns are excised. To sequence RNA, the usual method is first to reverse transcribe the sample to generate DNA fragments. This can then be sequenced as described above.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span class=&quot;mw-headline&quot;&gt;Protein sequencing&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;Methods for performing protein sequencing include:&lt;/font&gt;&lt;/p&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;Edman degradation &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;Peptide mass fingerprinting &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;Mass spectrometry &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;Protease digests &lt;/font&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;If the gene encoding the protein can be identified it is currently much easier to sequence the DNA and infer the protein sequence. Determining part of a protein's amino-acid sequence (often one end) by one of the above methods may be sufficient to enable the identification of a clone carrying the gene.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span class=&quot;mw-headline&quot;&gt;Polysaccharide sequencing&lt;/span&gt;&lt;/h2&gt;<br /> &lt;p&gt;&lt;font size=&quot;3&quot;&gt;Though polysaccharides are also biopolymers, it is not so common to talk of 'sequencing' a polysaccharide, for several reasons. Although many polysaccharides are linear, many have branches. Many different units (individual monosaccharides) can be used, and bonded in different ways. However, the main theoretical reason is that whereas the other polymers listed here are primarily generated in a 'template-dependent' manner by one processive enzyme, each individual join in a polysaccharide may be formed by a different enzyme. In many cases the assembly is not uniquely specified; depending on which enzyme acts, one of several different units may be incorporated. This can lead to a family of similar molecules being formed. This is particularly true for plant polysaccharides. Methods for the structure determination of oligosaccharides and polysaccharides include NMR spectroscopy and methylation analysis&lt;sup id=&quot;_ref-0&quot; class=&quot;reference&quot;&gt;[1]&lt;/sup&gt;.&lt;/font&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span class=&quot;mw-headline&quot;&gt;See also&lt;/span&gt;&lt;/h2&gt;<br /> &lt;ul&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;Genetic code &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;Sequence motif &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[http://sequenceome.org Sequenceome.org] &lt;/font&gt;&lt;/li&gt;<br /> &lt;li&gt;&lt;font size=&quot;3&quot;&gt;[http://glycome.net Glycome.net]&lt;/font&gt;&lt;/li&gt;<br /> &lt;/ul&gt;<br /> &lt;p&gt;&lt;a id=&quot;References&quot; name=&quot;References&quot;&gt;&lt;/a&gt;&lt;/p&gt;<br /> &lt;h2&gt;&lt;span class=&quot;mw-headline&quot;&gt;References&lt;/span&gt;&lt;/h2&gt;<br /> &lt;div class=&quot;references-small&quot;&gt;<br /> &lt;ol class=&quot;references&quot;&gt;<br /> &lt;li id=&quot;_note-0&quot;&gt;&lt;strong&gt;&lt;a title=&quot;&quot; href=&quot;http://en.wikipedia.org/wiki/Sequencing#_ref-0&quot;&gt;^&lt;/a&gt;&lt;/strong&gt; &lt;a class=&quot;external text&quot; title=&quot;http://www.stenutz.eu/sop&quot; rel=&quot;nofollow&quot; href=&quot;http://www.stenutz.eu/sop&quot;&gt;A practical guide to structural analysis of carbohydrates&lt;/a&gt;&lt;/li&gt;<br /> &lt;/ol&gt;<br /> &lt;/div&gt;</div> WikiSysop http://Genomics.org/index.php?title=NA18507_Nature_paper&diff=3406 NA18507 Nature paper 2011-01-16T06:30:23Z <p>WikiSysop: Created page with &quot;&lt;div class=&quot;fm-title&quot;&gt;&lt;span style=&quot;font-size: large&quot;&gt;Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry&lt;/span&gt;&lt;/div&gt; &lt;div class=&quot;fm-title&quot;&gt;&amp;nbsp;&lt;/div&gt; ...&quot;</p> <hr /> <div>&lt;div class=&quot;fm-title&quot;&gt;&lt;span style=&quot;font-size: large&quot;&gt;Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry&lt;/span&gt;&lt;/div&gt;<br /> &lt;div class=&quot;fm-title&quot;&gt;&amp;nbsp;&lt;/div&gt;<br /> &lt;div class=&quot;contrib-group fm-author&quot;&gt;David R. Bentley,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Shankar Balasubramanian,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;sup&gt;*&lt;/sup&gt;&lt;/font&gt; Harold P. Swerdlow,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;sup&gt;&amp;dagger;&lt;/sup&gt;&lt;/font&gt; Geoffrey P. Smith,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; John Milton,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;sup&gt;&amp;sect;&lt;/sup&gt;&lt;/font&gt; Clive G. Brown,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;sup&gt;&amp;sect;&lt;/sup&gt;&lt;/font&gt; Kevin P. Hall,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Dirk J. Evers,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Colin L. Barnes,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;1,&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/font&gt; Helen R. Bignell,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Jonathan M. Boutell,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Jason Bryant,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Richard J. Carter,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; R. Keira Cheetham,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Anthony J. Cox,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Darren J. Ellis,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Michael R. Flatbush,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Niall A. Gormley,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Sean J. Humphray,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Leslie J. Irving,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Mirian S. Karbelashvili,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Scott M. Kirk,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Heng Li,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; Xiaohai Liu,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;1,&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/font&gt; Klaus S. Maisinger,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Lisa J. Murray,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Bojan Obradovic,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Tobias Ost,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Michael L. Parkinson,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Mark R. Pratt,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Isabelle M. J. Rasolonjatovo,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Mark T. Reed,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Roberto Rigatti,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Chiara Rodighiero,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Mark T. Ross,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Andrea Sabot,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Subramanian V. Sankar,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Aylwyn Scally,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; Gary P. Schroth,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Mark E. Smith,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Vincent P. Smith,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Anastassia Spiridou,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Peta E. Torrance,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Svilen S. Tzonev,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Eric H. Vermaas,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Klaudia Walter,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; Xiaolin Wu,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Lu Zhang,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Mohammed D. Alam,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Carole Anastasi,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Ify C. Aniebo,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; David M. D. Bailey,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Iain R. Bancarz,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Saibal Banerjee,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Selena G. Barbour,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Primo A. Baybayan,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Vincent A. Benoit,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Kevin F. Benson,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Claire Bevis,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Phillip J. Black,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Asha Boodhun,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Joe S. Brennan,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; John A. Bridgham,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Rob C. Brown,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Andrew A. Brown,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Dale H. Buermann,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Abass A. Bundu,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; James C. Burrows,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Nigel P. Carter,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; Nestor Castillo,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Maria Chiara E. Catenazzi,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Simon Chang,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; R. Neil Cooley,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Natasha R. Crake,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Olubunmi O. Dada,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Konstantinos D. Diakoumakos,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Belen Dominguez-Fernandez,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; David J. Earnshaw,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;1,&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/font&gt; Ugonna C. Egbujor,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; David W. Elmore,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Sergey S. Etchin,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Mark R. Ewan,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Milan Fedurco,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;5&lt;/font&gt;&lt;/sup&gt; Louise J. Fraser,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Karin V. Fuentes Fajardo,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; W. Scott Furey,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;2&lt;/font&gt;&lt;/sup&gt; David George,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Kimberley J. Gietzen,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;6&lt;/font&gt;&lt;/sup&gt; Colin P. Goddard,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; George S. Golda,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Philip A. Granieri,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; David E. Green,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; David L. Gustafson,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Nancy F. Hansen,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;7&lt;/font&gt;&lt;/sup&gt; Kevin Harnish,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Christian D. Haudenschild,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Narinder I. Heyer,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Matthew M. Hims,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Johnny T. Ho,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Adrian M. Horgan,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Katya Hoschler,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Steve Hurwitz,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Denis V. Ivanov,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Maria Q. Johnson,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Terena James,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; T. A. Huw Jones,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Gyoung-Dong Kang,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Tzvetana H. Kerelska,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Alan D. Kersey,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Irina Khrebtukova,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Alex P. Kindwall,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Zoya Kingsbury,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Paula I. Kokko-Gonzales,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Anil Kumar,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Marc A. Laurent,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;6&lt;/font&gt;&lt;/sup&gt; Cynthia T. Lawley,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;6&lt;/font&gt;&lt;/sup&gt; Sarah E. Lee,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Xavier Lee,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Arnold K. Liao,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Jennifer A. Loch,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Mitch Lok,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Shujun Luo,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Radhika M. Mammen,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; John W. Martin,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Patrick G. McCauley,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Paul McNitt,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Parul Mehta,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Keith W. Moon,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Joe W. Mullens,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Taksina Newington,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Zemin Ning,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; Bee Ling Ng,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; Sonia M. Novo,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Michael J. O'Neill,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Mark A. Osborne,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;1,&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/font&gt; Andrew Osnowski,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Omead Ostadan,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;3,&lt;/sup&gt;&lt;sup&gt;6&lt;/sup&gt;&lt;/font&gt; Lambros L. Paraschos,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Lea Pickering,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Andrew C. Pike,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Alger C. Pike,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; D. Chris Pinkard,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Daniel P. Pliskin,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Joe Podhasky,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Victor J. Quijano,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Come Raczy,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Vicki H. Rae,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Stephen R. Rawlings,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Ana Chiva Rodriguez,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Phyllida M. Roe,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; John Rogers,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Maria C. Rogert Bacigalupo,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Nikolai Romanov,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Anthony Romieu,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;5&lt;/font&gt;&lt;/sup&gt; Rithy K. Roth,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Natalie J. Rourke,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Silke T. Ruediger,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Eli Rusman,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Raquel M. Sanches-Kuiper,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Martin R. Schenker,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Josefina M. Seoane,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Richard J. Shaw,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Mitch K. Shiver,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Steven W. Short,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Ning L. Sizto,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Johannes P. Sluis,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Melanie A. Smith,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Jean Ernest Sohna Sohna,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Eric J. Spence,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Kim Stevens,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Neil Sutton,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Lukasz Szajkowski,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Carolyn L. Tregidgo,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Gerardo Turcatti,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;5&lt;/font&gt;&lt;/sup&gt; Stephanie vandeVondele,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Yuli Verhovsky,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Selene M. Virk,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Suzanne Wakelin,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Gregory C. Walcott,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Jingwen Wang,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Graham J. Worsley,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt; Juying Yan,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Ling Yau,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Mike Zuerlein,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Jane Rogers,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; James C. Mullikin,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;7&lt;/font&gt;&lt;/sup&gt; Matthew E. Hurles,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; Nick J. McCooke,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;sup&gt;&amp;Dagger;&lt;/sup&gt;&lt;/font&gt; John S. West,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Frank L. Oaks,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; Peter L. Lundberg,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt; David Klenerman,&lt;font size=&quot;2&quot;&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;sup&gt;*&lt;/sup&gt;&lt;/font&gt; Richard Durbin,&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt; and Anthony J. Smith&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt;&lt;/div&gt;<br /> &lt;div class=&quot;contrib-group fm-author&quot;&gt;&amp;nbsp;&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;1&lt;/font&gt;&lt;/sup&gt;Illumina Cambridge Ltd., (Formerly Solexa Ltd) Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex. CB10 1XL, UK&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;2&lt;/font&gt;&lt;/sup&gt;Department of Chemistry, University of Cambridge, The University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;3&lt;/font&gt;&lt;/sup&gt;Illumina Hayward, (Formerly Solexa Inc) 23851 Industrial Bvld, Hayward, CA 94343, USA&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;4&lt;/font&gt;&lt;/sup&gt;The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;5&lt;/font&gt;&lt;/sup&gt;Manteia Predictive Medicine S.A. Zone Industrielle, Coinsins, CH-1267, Switzerland&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;6&lt;/font&gt;&lt;/sup&gt;Illumina Inc. ,Corporate Headquarters, 9883 Towne Centre Drive, San Diego, CA 92121, USA&lt;/div&gt;<br /> &lt;div class=&quot;fm-affl&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;7&lt;/font&gt;&lt;/sup&gt;National Human Genome Research Institute, National Institutes of Health, 41 Center Drive, MSC 2132, 9000 Rockville Pike, Bethesda, MD 20892-2132, USA&lt;/div&gt;<br /> &lt;div id=&quot;FN1&quot; class=&quot;fm-footnote&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;*&lt;/font&gt;&lt;/sup&gt;Inventors and founders of Solexa Ltd&lt;/div&gt;<br /> &lt;div id=&quot;FN2&quot; class=&quot;fm-footnote&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;&amp;dagger;&lt;/font&gt;&lt;/sup&gt;The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK&lt;/div&gt;<br /> &lt;div id=&quot;FN3&quot; class=&quot;fm-footnote&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;&amp;sect;&lt;/font&gt;&lt;/sup&gt;Oxford Nanopore Technologies, Begbroke Science Park, Sandy Lane, Kidlington. OX5 1PF&lt;/div&gt;<br /> &lt;div id=&quot;FN4&quot; class=&quot;fm-footnote&quot;&gt;&lt;sup&gt;&lt;font size=&quot;2&quot;&gt;&amp;Dagger;&lt;/font&gt;&lt;/sup&gt;Pronota, NV, VIB Bio-Incubator, Technologiepark 4, B-9052 Zwijnaarde / Ghent, Belgium&lt;/div&gt;<br /> &lt;div id=&quot;cor1&quot; class=&quot;fm-footnote&quot;&gt;Correspondence and requests for materials should be addressed to David.R. Bentley (&lt;span class=&quot;email-label&quot;&gt;Email: &lt;/span&gt;&lt;span class=&quot;e_id4842102&quot;&gt;&lt;a class=&quot;ext-reflink&quot; href=&quot;mailto:dbentley@illumina.com&quot;&gt;dbentley@illumina.com&lt;/a&gt;&lt;/span&gt;<br /> &lt;script language=&quot;JavaScript&quot; type=&quot;text/javascript&quot;&gt;&lt;!--<br /> try{initUnObscureEmail (&quot;e_id4842102&quot;, '&lt;a class=&quot;ext-reflink&quot; href=&quot;' + reverseAndReplaceString('moc.animulli/ta/yeltnebd:otliam', '/at/', '@') + '&quot;&gt;' + reverseAndReplaceString('moc.animulli/ta/yeltnebd', '/at/','@') + '&lt;/a&gt;')}catch(e){}<br /> //--&gt;&lt;/script&gt;<br /> )&lt;/div&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_African_Genome&diff=3405 The first African Genome 2011-01-16T06:29:20Z <p>WikiSysop: Created page with &quot;&lt;p&gt;NA18507 Nature paper&lt;/p&gt; &lt;p&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/&quot;&gt;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/&lt;/a&gt;&lt;/p&gt; &lt;p&gt;&lt;a href=&quot;http://...&quot;</p> <hr /> <div>&lt;p&gt;[[NA18507 Nature paper]]&lt;/p&gt;<br /> &lt;p&gt;&lt;a href=&quot;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/&quot;&gt;http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/&lt;/a&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;a href=&quot;http://www.nature.com/nbt/journal/v28/n1/fig_tab/nbt.1596_T1.html&quot;&gt;http://www.nature.com/nbt/journal/v28/n1/fig_tab/nbt.1596_T1.html&lt;/a&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=The_first_genomes&diff=3404 The first genomes 2011-01-16T06:26:57Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;b&gt;&lt;span style=&quot;font-size: large&quot;&gt;The first genomes in the genomics history.&lt;/span&gt;&lt;/b&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;[[The first human genome]]&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp; [[The first Caucasian genome]]&amp;nbsp;&amp;nbsp; [[The first Asian genome]]&amp;nbsp; [[The first Chinese genome]]&amp;nbsp; [[The first Korean genome]]&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; [[The first individual genome]] Venter's.&amp;nbsp; [[James Watson Genome]]&amp;nbsp;&amp;nbsp; [[The first African Genome]] NA18507&lt;/p&gt;<br /> &lt;p&gt;[[The first bacterial genome]]&lt;/p&gt;<br /> &lt;p&gt;[[The first plant genome]]&lt;/p&gt;<br /> &lt;p&gt;[[The first Archae genome]]&lt;/p&gt;<br /> &lt;p&gt;[[The first&amp;nbsp;yeast genome]]: April 1996&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;hr /&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: small&quot;&gt;[[Top genomics centers]]&amp;nbsp; |&amp;nbsp; [[Genomics News and Ads Archive|Genomics news]]&amp;nbsp; |&amp;nbsp; [[Genomics people]]&amp;nbsp;&amp;nbsp;|&amp;nbsp; [[Genomics company]]&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=James_Watson_Genome_Paper_Abstract&diff=3403 James Watson Genome Paper Abstract 2011-01-16T05:04:29Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of &amp;lsquo;genomic medicine&amp;rsquo;. However, the formidable size of the diploid human genome&lt;sup&gt;&lt;a style=&quot;color: rgb(43,64,85)&quot; href=&quot;http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html#B1&quot;&gt;1&lt;/a&gt;&lt;/sup&gt;, approximately 6&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&amp;thinsp;&lt;/span&gt;&lt;/span&gt;gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to &lt;span style=&quot;color: #ff0000&quot;&gt;7.4-fold &lt;/span&gt;redundancy in &lt;span style=&quot;color: #ff0000&quot;&gt;two months &lt;/span&gt;using massively parallel sequencing in picolitre-size reaction vessels. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;Comparison of the sequence to the reference genome led to the identification of&lt;span style=&quot;color: #ff0000&quot;&gt; 3.3&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&amp;thinsp;&lt;/span&gt;&lt;/span&gt;million &lt;/span&gt;single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;In addition, we accurately identified small-scale (2&amp;ndash;40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&amp;thinsp;&lt;/span&gt;&lt;/span&gt;million base pairs. Overall, these results agree well with recent results of sequencing of a single individual&lt;sup&gt;&lt;a style=&quot;color: rgb(43,64,85)&quot; href=&quot;http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html#B2&quot;&gt;2&lt;/a&gt;&lt;/sup&gt;&lt;span class=&quot;Apple-converted-space&quot;&gt;&amp;nbsp;&lt;/span&gt;by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;This is the first genome sequenced by next-generation technologies. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;Therefore it is a pilot for the future challenges of &amp;lsquo;personalized genome sequencing&amp;rsquo;.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;External Links&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;[http://personalgenomics.org Personal Genomics.org]&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=James_Watson_Genome_Paper_Abstract&diff=3402 James Watson Genome Paper Abstract 2011-01-16T05:03:55Z <p>WikiSysop: Created page with &quot;&lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: nor...&quot;</p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of &amp;lsquo;genomic medicine&amp;rsquo;. However, the formidable size of the diploid human genome&lt;sup&gt;&lt;a style=&quot;color: rgb(43,64,85)&quot; href=&quot;http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html#B1&quot;&gt;1&lt;/a&gt;&lt;/sup&gt;, approximately 6&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&amp;thinsp;&lt;/span&gt;&lt;/span&gt;gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to &lt;span style=&quot;color: #ff0000&quot;&gt;7.4-fold &lt;/span&gt;redundancy in &lt;span style=&quot;color: #ff0000&quot;&gt;two months &lt;/span&gt;using massively parallel sequencing in picolitre-size reaction vessels. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;Comparison of the sequence to the reference genome led to the identification of&lt;span style=&quot;color: #ff0000&quot;&gt; 3.3&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&amp;thinsp;&lt;/span&gt;&lt;/span&gt;million &lt;/span&gt;single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;In addition, we accurately identified small-scale (2&amp;ndash;40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&lt;span style=&quot;background-image: none !important; padding-bottom: 0px !important; background-color: transparent !important; padding-left: 0px !important; padding-right: 0px !important; display: inline !important; font-family: 'arial unicode ms', 'lucida grande', 'lucida sans unicode', sans-serif !important; visibility: visible !important; padding-top: 0px !important; background-origin: initial; background-clip: initial&quot; class=&quot;mb&quot;&gt;&amp;thinsp;&lt;/span&gt;&lt;/span&gt;million base pairs. Overall, these results agree well with recent results of sequencing of a single individual&lt;sup&gt;&lt;a style=&quot;color: rgb(43,64,85)&quot; href=&quot;http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html#B2&quot;&gt;2&lt;/a&gt;&lt;/sup&gt;&lt;span class=&quot;Apple-converted-space&quot;&gt;&amp;nbsp;&lt;/span&gt;by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;This is the first genome sequenced by next-generation technologies. &lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;widows: 2; text-transform: none; text-indent: 0px; border-collapse: separate; font: medium 'Times New Roman'; white-space: normal; orphans: 2; letter-spacing: normal; color: rgb(0,0,0); word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px&quot; class=&quot;Apple-style-span&quot;&gt;&lt;span style=&quot;text-align: left; line-height: 16px; font-family: Verdana, arial, Helvetica, sans-serif; font-size: 12px; font-weight: bold&quot; class=&quot;Apple-style-span&quot;&gt;Therefore it is a pilot for the future challenges of &amp;lsquo;personalized genome sequencing&amp;rsquo;.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=James_Watson_Genome&diff=3401 James Watson Genome 2011-01-16T05:02:42Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;James Watson Genome&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;The full genome of James D. Watson, one of the discoverers of the structure of DNA in 1953, has been publicized in May 2007&lt;/p&gt;<br /> &lt;p&gt;It was done by 454 Life Sciences&lt;/p&gt;<br /> &lt;p&gt;A copy of his genome, recorded on a pair of DVDs, was presented to Dr. Watson in a ceremony in Houston.&lt;/p&gt;<br /> &lt;p&gt;Richard Gibbs suggested the genome project, who is the director of the Human Genome Sequencing Center at the Baylor College of Medicine.&lt;/p&gt;<br /> &lt;p&gt;Jonathan Rothberg, founder of the company 454 Life Sciences carried out the sequencing.&lt;/p&gt;<br /> &lt;p&gt;Dr. Watson&amp;nbsp;released his genome except&amp;nbsp;apolipoprotein E gene.&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;James Watson Genome Paper:&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;Nature 452, 872-876 (17 April 2008) | doi:10.1038/nature06884; Received 3 December 2007; Accepted 4 March 2008.&lt;br /&gt;<br /> &lt;b&gt;The complete genome of an individual by massively parallel DNA sequencing&lt;br /&gt;<br /> &lt;/b&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;a href=&quot;http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html&quot;&gt;http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html&lt;/a&gt;&lt;/p&gt;<br /> &lt;p&gt;[[James Watson Genome Paper Abstract]]&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=James_Watson_Genome&diff=3400 James Watson Genome 2011-01-16T04:54:34Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;James Watson Genome&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;The full genome of James D. Watson, one of the discoverers of the structure of DNA in 1953, has been publicized in May 2007&lt;/p&gt;<br /> &lt;p&gt;It was done by 454 Life Sciences&lt;/p&gt;<br /> &lt;p&gt;A copy of his genome, recorded on a pair of DVDs, was presented to Dr. Watson in a ceremony in Houston.&lt;/p&gt;<br /> &lt;p&gt;Richard Gibbs suggested the genome project, who is the director of the Human Genome Sequencing Center at the Baylor College of Medicine.&lt;/p&gt;<br /> &lt;p&gt;Jonathan Rothberg, founder of the company 454 Life Sciences carried out the sequencing.&lt;/p&gt;<br /> &lt;p&gt;Dr. Watson&amp;nbsp;released his genome except&amp;nbsp;apolipoprotein E gene.&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;James Watson Genome Paper:&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;Nature 452, 872-876 (17 April 2008) | doi:10.1038/nature06884; Received 3 December 2007; Accepted 4 March 2008.&lt;br /&gt;<br /> &lt;b&gt;The complete genome of an individual by massively parallel DNA sequencing&lt;br /&gt;<br /> &lt;/b&gt;&lt;/p&gt;<br /> &lt;p&gt;&lt;a href=&quot;http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html&quot;&gt;http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html&lt;/a&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop http://Genomics.org/index.php?title=James_Watson_Genome&diff=3399 James Watson Genome 2011-01-16T04:20:33Z <p>WikiSysop: </p> <hr /> <div>&lt;p&gt;&lt;span style=&quot;font-size: medium&quot;&gt;James Watson Genome&lt;/span&gt;&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;The full genome of James D. Watson, one of the discoverers of the structure of DNA in 1953, has been publicized in May 2007&lt;/p&gt;<br /> &lt;p&gt;It was done by 454 Life Sciences&lt;/p&gt;<br /> &lt;p&gt;A copy of his genome, recorded on a pair of DVDs, was presented to Dr. Watson in a ceremony in Houston.&lt;/p&gt;<br /> &lt;p&gt;Richard Gibbs suggested the genome project, who is the director of the Human Genome Sequencing Center at the Baylor College of Medicine.&lt;/p&gt;<br /> &lt;p&gt;Jonathan Rothberg, founder of the company 454 Life Sciences carried out the sequencing.&lt;/p&gt;<br /> &lt;p&gt;Dr. Watson&amp;nbsp;released his genome except&amp;nbsp;apolipoprotein E gene.&lt;/p&gt;<br /> &lt;p&gt;&amp;nbsp;&lt;/p&gt;</div> WikiSysop